Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
dardem's picture
Update README.md
56acbda verified
|
raw
history blame
2.96 kB
---
language:
- en
- uk
- ru
- de
- zh
- am
- ar
- hi
- es
license: openrail++
size_categories:
- 1K<n<10K
task_categories:
- text-generation
dataset_info:
features:
- name: toxic_sentence
dtype: string
splits:
- name: en
num_bytes: 24945
num_examples: 400
- name: ru
num_bytes: 48249
num_examples: 400
- name: uk
num_bytes: 40226
num_examples: 400
- name: de
num_bytes: 44940
num_examples: 400
- name: es
num_bytes: 30159
num_examples: 400
- name: am
num_bytes: 72606
num_examples: 400
- name: zh
num_bytes: 36219
num_examples: 400
- name: ar
num_bytes: 44668
num_examples: 400
- name: hi
num_bytes: 57291
num_examples: 400
download_size: 257508
dataset_size: 399303
configs:
- config_name: default
data_files:
- split: en
path: data/en-*
- split: ru
path: data/ru-*
- split: uk
path: data/uk-*
- split: de
path: data/de-*
- split: es
path: data/es-*
- split: am
path: data/am-*
- split: zh
path: data/zh-*
- split: ar
path: data/ar-*
- split: hi
path: data/hi-*
---
**MultiParaDetox**
This is the multilingual parallel dataset for text detoxification prepared for [CLEF TextDetox 2024](https://pan.webis.de/clef24/pan24-web/text-detoxification.html) shared task.
For each of 9 languages, we collected 1k pairs of toxic<->detoxified instances splitted into two parts: dev (400 pairs) and test (600 pairs).
**Now, only dev set toxic sentences are released. Dev set references and test set toxic sentences will be released later with the test phase of the competition!**
The list of the sources for the original toxic sentences:
* English: [Jigsaw](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Unitary AI Toxicity Dataset](https://github.com/unitaryai/detoxify)
* Russian: [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments), [Toxic Russian Comments](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments)
* Ukrainian: [Ukrainian Twitter texts](https://github.com/saganoren/ukr-twi-corpus)
* Spanish: [Detecting and Monitoring Hate Speech in Twitter](https://www.mdpi.com/1424-8220/19/21/4654), [Detoxis](https://rdcu.be/dwhxH), [RoBERTuito: a pre-trained language model for social media text in Spanish](https://aclanthology.org/2022.lrec-1.785/)
* German: [GemEval 2018, 2021](https://aclanthology.org/2021.germeval-1.1/)
* Amhairc: [Amharic Hate Speech](https://github.com/uhh-lt/AmharicHateSpeech)
* Arabic: [OSACT4](https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/)
* Hindi: [Hostility Detection Dataset in Hindi](https://competitions.codalab.org/competitions/26654#learn_the_details-dataset), [Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages](https://dl.acm.org/doi/pdf/10.1145/3368567.3368584?download=true)