Update metrics/bart_score.py
Browse files- metrics/bart_score.py +31 -122
metrics/bart_score.py
CHANGED
@@ -1,137 +1,46 @@
|
|
1 |
import os
|
2 |
import numpy as np
|
3 |
from BARTScore.bart_score import BARTScorer
|
4 |
-
from src.metrics import Metric
|
5 |
-
import logging
|
6 |
-
from tqdm import tqdm
|
7 |
|
8 |
-
logger = logging.getLogger(__name__)
|
9 |
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
"""
|
13 |
-
The BARTScore metric, based on the example from https://github.com/neulab/BARTScore
|
14 |
-
"""
|
15 |
|
16 |
-
|
17 |
-
super().__init__(**kwargs)
|
18 |
|
19 |
-
|
20 |
-
os.path.join("BARTScore", "bart.pth")
|
21 |
-
), "You must download `bart.pth` to use BARTScore.\nUse `gdown --id 1_7JfF7KOInb7ZrxKHIigTMR4ChVET01m --output bart.pth`"
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
"para": self.get_para_scorer,
|
28 |
-
}
|
29 |
-
self.requires_decoded = True
|
30 |
-
|
31 |
-
@staticmethod
|
32 |
-
def get_vanilla_scorer():
|
33 |
-
"""
|
34 |
-
returns the the vanilla bart scorer
|
35 |
-
"""
|
36 |
-
bart_scorer = BARTScorer(device="cuda:0", checkpoint="facebook/bart-large")
|
37 |
-
return bart_scorer
|
38 |
-
|
39 |
-
@staticmethod
|
40 |
-
def get_cnn_scorer():
|
41 |
-
"""
|
42 |
-
returns the the cnn version of bart sore
|
43 |
-
"""
|
44 |
-
bart_scorer = BARTScorer(device="cuda:0", checkpoint="facebook/bart-large-cnn")
|
45 |
-
return bart_scorer
|
46 |
-
|
47 |
-
@staticmethod
|
48 |
-
def get_para_scorer():
|
49 |
-
"""
|
50 |
-
returns the parabank version of bart score
|
51 |
-
"""
|
52 |
-
# for the parabank model, first init a bart model, then load the local para model from BARTScore/bart.pth
|
53 |
-
# See the documentation from https://github.com/neulab/BARTScore for reference
|
54 |
-
bart_scorer = BARTScorer(device="cuda:0", checkpoint="facebook/bart-large-cnn")
|
55 |
-
bart_scorer.load(path="BARTScore/bart.pth")
|
56 |
-
return bart_scorer
|
57 |
-
|
58 |
-
def calc_bart_score(self, scorer, prediction, gold_labels):
|
59 |
-
"""
|
60 |
-
calculate the bart score for a prediction given the gold labels for a specific scorer
|
61 |
-
"""
|
62 |
-
|
63 |
-
# num_gold_labels
|
64 |
-
num_gold_labels = len(gold_labels)
|
65 |
-
|
66 |
-
# ref to hypo scores are the precision
|
67 |
-
ref_hypo_scores = np.array(scorer.score(gold_labels, [prediction] * num_gold_labels, batch_size=4))
|
68 |
-
|
69 |
-
# hypo to ref scores are the recall
|
70 |
-
hypo_ref_scores = np.array(scorer.score([prediction] * num_gold_labels, gold_labels, batch_size=4))
|
71 |
-
|
72 |
-
# take max and average
|
73 |
-
max_avg_f = (0.5 * (ref_hypo_scores + hypo_ref_scores)).max()
|
74 |
-
hypo_ref = hypo_ref_scores.max()
|
75 |
-
ref_hypo = ref_hypo_scores.max()
|
76 |
-
|
77 |
-
return {"f_score": max_avg_f, "precision": ref_hypo, "recall": hypo_ref}
|
78 |
-
|
79 |
-
def _compute_metrics(self, id_to_pred, id_to_labels):
|
80 |
|
81 |
-
|
82 |
-
result = {}
|
83 |
|
84 |
-
# iterate scorers
|
85 |
-
for scorer_name, scorer_getter in self.bart_scorers_initializers.items():
|
86 |
-
scorer = scorer_getter()
|
87 |
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
if question_id not in id_to_pred:
|
100 |
-
num_missing_predictions += 1
|
101 |
-
bart_scores.append(0.0)
|
102 |
-
continue
|
103 |
-
|
104 |
-
# get pred
|
105 |
-
pred = id_to_pred[question_id]
|
106 |
-
|
107 |
-
# calculate bart scores
|
108 |
-
bart_scores.append(
|
109 |
-
self.calc_bart_score(scorer=scorer, prediction=pred, gold_labels=question_gold_labels)
|
110 |
-
)
|
111 |
-
|
112 |
-
# Aggregate scorer metrics
|
113 |
-
bart_score_f = np.mean([score["f_score"] for score in bart_scores])
|
114 |
-
bart_score_precision = np.mean([score["precision"] for score in bart_scores])
|
115 |
-
bart_score_recall = np.mean([score["recall"] for score in bart_scores])
|
116 |
-
|
117 |
-
# scorer_results
|
118 |
-
scorer_result = {
|
119 |
-
f"{scorer_name}_BARTScore_f": bart_score_f,
|
120 |
-
f"{scorer_name}_BARTScore_precision": bart_score_precision,
|
121 |
-
f"{scorer_name}_BARTScore_recall": bart_score_recall,
|
122 |
-
}
|
123 |
-
|
124 |
-
logger.info(scorer_name)
|
125 |
-
logger.info(scorer_result)
|
126 |
-
|
127 |
-
# union results
|
128 |
-
result = {**result, **scorer_result}
|
129 |
-
|
130 |
-
# add results metadata
|
131 |
-
result["num_missing_predictions"] = num_missing_predictions
|
132 |
|
133 |
-
result = {k: round(v, 4) for k, v in result.items()}
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import numpy as np
|
3 |
from BARTScore.bart_score import BARTScorer
|
|
|
|
|
|
|
4 |
|
|
|
5 |
|
6 |
+
def get_scorers():
|
7 |
+
assert os.path.isfile(
|
8 |
+
os.path.join("BARTScore", "bart.pth")
|
9 |
+
), "You must download `bart.pth` to use BARTScore.\nUse `gdown --id 1_7JfF7KOInb7ZrxKHIigTMR4ChVET01m --output bart.pth`"
|
10 |
|
11 |
+
scorers = {}
|
|
|
|
|
|
|
12 |
|
13 |
+
scorers["vanilla"] = BARTScorer(device="cuda:0", checkpoint="facebook/bart-large")
|
|
|
14 |
|
15 |
+
scorers["cnn"] = BARTScorer(device="cuda:0", checkpoint="facebook/bart-large-cnn")
|
|
|
|
|
16 |
|
17 |
+
# for the parabank model, first init a bart model, then load the local para model from BARTScore/bart.pth
|
18 |
+
# see the documentation from https://github.com/neulab/BARTScore for reference
|
19 |
+
scorers["para"] = BARTScorer(device="cuda:0", checkpoint="facebook/bart-large-cnn")
|
20 |
+
scorers["para"].load(path="BARTScore/bart.pth")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
return scorers
|
|
|
23 |
|
|
|
|
|
|
|
24 |
|
25 |
+
def compute_bart_score_for_scorer(predictions, references, scorer_name, scorer):
|
26 |
+
precisions = np.array(scorer.score(references, predictions, batch_size=4))
|
27 |
+
recalls = np.array(scorer.score(predictions, references, batch_size=4))
|
28 |
+
f_scores = 0.5 * (precisions + recalls)
|
29 |
|
30 |
+
return [
|
31 |
+
{
|
32 |
+
f"{scorer_name}_f_score": f_scores[i],
|
33 |
+
f"{scorer_name}_precision": precisions[i],
|
34 |
+
f"{scorer_name}_recall": recalls[i],
|
35 |
+
}
|
36 |
+
for i in range(len(predictions))
|
37 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
39 |
|
40 |
+
def compute_bart_score(predictions, references, scorers):
|
41 |
+
result = [{} for _ in range(len(predictions))]
|
42 |
+
for scorer_name, scorer in scorers.items():
|
43 |
+
scorer_result = compute_bart_score_for_scorer(predictions, references, scorer_name, scorer)
|
44 |
+
for i, element in enumerate(scorer_result):
|
45 |
+
result[i].update(element)
|
46 |
+
return result
|