|
|
|
|
|
from copy import deepcopy |
|
from sacrebleu.metrics import BLEU |
|
|
|
|
|
def compute_bleu( |
|
predictions, |
|
references, |
|
smooth_method="exp", |
|
smooth_value=None, |
|
force=False, |
|
lowercase=False, |
|
tokenize=None, |
|
effective_order=False, |
|
): |
|
references_per_prediction = len(references[0]) |
|
if any(len(refs) != references_per_prediction for refs in references): |
|
references = deepcopy(references) |
|
max_references_per_prediction = max(len(refs) for refs in references) |
|
for refs in references: |
|
refs.extend([None] * (max_references_per_prediction - len(refs))) |
|
|
|
transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] |
|
|
|
bleu = BLEU( |
|
smooth_method=smooth_method, |
|
smooth_value=smooth_value, |
|
force=force, |
|
lowercase=lowercase, |
|
effective_order=effective_order, |
|
**(dict(tokenize=tokenize) if tokenize else {}), |
|
) |
|
output = bleu.corpus_score( |
|
predictions, |
|
transformed_references, |
|
) |
|
output_dict = { |
|
"score": output.score, |
|
**{f"counts-{i+1}": round(p, 4) for i, p in enumerate(output.counts)}, |
|
**{f"totals-{i+1}": round(p, 4) for i, p in enumerate(output.totals)}, |
|
**{f"precision-{i+1}": round(p, 4) for i, p in enumerate(output.precisions)}, |
|
"bp": output.bp, |
|
"sys_len": output.sys_len, |
|
"ref_len": output.ref_len, |
|
} |
|
return output_dict |
|
|