|
import re |
|
import string |
|
|
|
|
|
def normalize_answer(s): |
|
"""Lower text and remove punctuation, articles and extra whitespace.""" |
|
|
|
def remove_articles(text): |
|
return re.sub(r"\b(a|an|the)\b", " ", text) |
|
|
|
def white_space_fix(text): |
|
return " ".join(text.split()) |
|
|
|
def remove_punc(text): |
|
exclude = set(string.punctuation) |
|
return "".join(ch for ch in text if ch not in exclude) |
|
|
|
def lower(text): |
|
return text.lower() |
|
|
|
return white_space_fix(remove_articles(remove_punc(lower(s)))) |
|
|
|
|
|
def exact_match_score(prediction, ground_truth): |
|
return normalize_answer(prediction) == normalize_answer(ground_truth) |
|
|
|
|
|
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): |
|
scores_for_ground_truths = [] |
|
for ground_truth in ground_truths: |
|
score = metric_fn(prediction, ground_truth) |
|
scores_for_ground_truths.append(score) |
|
return max(scores_for_ground_truths) |
|
|
|
|
|
def compute_exact_match(predictions, references): |
|
exact_match = 0 |
|
for prediction, ground_truths in zip(predictions, references): |
|
exact_match += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) |
|
return 100.0 * exact_match / len(predictions) |
|
|