|
|
import pandas as pd |
|
|
from pathlib import Path |
|
|
from tqdm import tqdm |
|
|
|
|
|
def find_last_true_index(interpolated_series): |
|
|
|
|
|
true_indices = interpolated_series[interpolated_series == True].index |
|
|
if len(true_indices) > 0: |
|
|
return true_indices[-1] |
|
|
return None |
|
|
|
|
|
def analyze_all_samples(data_dir): |
|
|
|
|
|
data_path = Path(data_dir) |
|
|
parquet_files = sorted(data_path.glob("*.parquet")) |
|
|
|
|
|
results = [] |
|
|
|
|
|
for parquet_file in tqdm(parquet_files, desc="analyzing samples"): |
|
|
sample_name = parquet_file.stem |
|
|
|
|
|
df = pd.read_parquet(parquet_file) |
|
|
|
|
|
if 'interpolated' not in df.columns: |
|
|
print(f"warning: {sample_name} has no interpolated column") |
|
|
continue |
|
|
|
|
|
last_true_idx = find_last_true_index(df['interpolated']) |
|
|
|
|
|
results.append({ |
|
|
'sample': sample_name, |
|
|
'last_true_index': last_true_idx |
|
|
}) |
|
|
|
|
|
|
|
|
results_df = pd.DataFrame(results) |
|
|
|
|
|
|
|
|
output_csv = Path(data_dir).parent / 'interpolated_analysis.csv' |
|
|
results_df.to_csv(output_csv, index=False) |
|
|
print(f"\nresults saved to: {output_csv}") |
|
|
|
|
|
return results_df |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
data_dir = "./trajectories" |
|
|
results = analyze_all_samples(data_dir) |
|
|
|
|
|
print("\nanalysis results:") |
|
|
print(results) |
|
|
print(f"\nstatistics:") |
|
|
print(results.describe()) |