Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
ArXiv:
License:
dipteshkanojia
commited on
Commit
•
ecaed14
1
Parent(s):
7923436
Rename PLOD-CW_old.py to PLOD-CW.py
Browse files- PLOD-CW_old.py → PLOD-CW.py +1 -80
PLOD-CW_old.py → PLOD-CW.py
RENAMED
@@ -81,83 +81,4 @@ class PLODfilteredConfig(datasets.GeneratorBasedBuilder):
|
|
81 |
homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection",
|
82 |
citation=_CITATION,
|
83 |
)
|
84 |
-
|
85 |
-
_URLS = {
|
86 |
-
"train": _URL + "PLOS-train70-filtered-pos_bio.json",
|
87 |
-
"dev": _URL + "PLOS-val15-filtered-pos_bio.json",
|
88 |
-
"test": _URL + "PLOS-test15-filtered-pos_bio.json"
|
89 |
-
}
|
90 |
-
|
91 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
92 |
-
urls_to_download = self._URLS
|
93 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
94 |
-
|
95 |
-
return [
|
96 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
97 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
98 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
|
99 |
-
]
|
100 |
-
|
101 |
-
def _generate_examples(self, filepath):
|
102 |
-
"""This function returns the examples in the raw (text) form."""
|
103 |
-
logger.info("generating examples from = %s", filepath)
|
104 |
-
with open(filepath) as f:
|
105 |
-
plod = json.load(f)
|
106 |
-
for object in plod:
|
107 |
-
id_ = int(object['id'])
|
108 |
-
yield id_, {
|
109 |
-
"id": str(id_),
|
110 |
-
"tokens": object['tokens'],
|
111 |
-
"pos_tags": object['pos_tags'],
|
112 |
-
"ner_tags": object['ner_tags'],
|
113 |
-
}
|
114 |
-
_URL = "https://huggingface.co/datasets/surrey-nlp/PLOD-CW/resolve/main/data/"
|
115 |
-
_URLS = {
|
116 |
-
"train": _URL + "train.conll",
|
117 |
-
"dev": _URL + "dev.conll",
|
118 |
-
"test": _URL + "test.conll"
|
119 |
-
}
|
120 |
-
|
121 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
122 |
-
urls_to_download = self._URLS
|
123 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
124 |
-
|
125 |
-
return [
|
126 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
127 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
128 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
|
129 |
-
]
|
130 |
-
|
131 |
-
def _generate_examples(self, filepath):
|
132 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
133 |
-
with open(filepath, encoding="utf-8") as f:
|
134 |
-
guid = 0
|
135 |
-
tokens = []
|
136 |
-
pos_tags = []
|
137 |
-
ner_tags = []
|
138 |
-
for line in f:
|
139 |
-
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
140 |
-
if tokens:
|
141 |
-
yield guid, {
|
142 |
-
"id": str(guid),
|
143 |
-
"tokens": tokens,
|
144 |
-
"pos_tags": pos_tags,
|
145 |
-
"ner_tags": ner_tags,
|
146 |
-
}
|
147 |
-
guid += 1
|
148 |
-
tokens = []
|
149 |
-
pos_tags = []
|
150 |
-
ner_tags = []
|
151 |
-
else:
|
152 |
-
splits = line.split(" ")
|
153 |
-
tokens.append(splits[0])
|
154 |
-
pos_tags.append(splits[1])
|
155 |
-
ner_tags.append(splits[2].rstrip())
|
156 |
-
# last example
|
157 |
-
if tokens:
|
158 |
-
yield guid, {
|
159 |
-
"id": str(guid),
|
160 |
-
"tokens": tokens,
|
161 |
-
"pos_tags": pos_tags,
|
162 |
-
"ner_tags": ner_tags,
|
163 |
-
}
|
|
|
81 |
homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection",
|
82 |
citation=_CITATION,
|
83 |
)
|
84 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|