|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Named Temporal Expressions corpus (English)""" |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{brucato-etal-2013-recognising, |
|
title = "Recognising and Interpreting Named Temporal Expressions", |
|
author = "Brucato, Matteo and |
|
Derczynski, Leon and |
|
Llorens, Hector and |
|
Bontcheva, Kalina and |
|
Jensen, Christian S.", |
|
booktitle = "Proceedings of the International Conference Recent Advances in Natural Language Processing {RANLP} 2013", |
|
month = sep, |
|
year = "2013", |
|
address = "Hissar, Bulgaria", |
|
publisher = "INCOMA Ltd. Shoumen, BULGARIA", |
|
url = "https://aclanthology.org/R13-1015", |
|
pages = "113--121", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is a dataset annotated for _named temporal expression_ chunks. |
|
|
|
The |
|
commonest temporal expressions typically |
|
contain date and time words, like April or |
|
hours. Research into recognising and interpreting these typical expressions is mature in many languages. However, there is |
|
a class of expressions that are less typical, |
|
very varied, and difficult to automatically |
|
interpret. These indicate dates and times, |
|
but are harder to detect because they often do not contain time words and are not |
|
used frequently enough to appear in conventional temporally-annotated corpora – |
|
for example *Michaelmas* or *Vasant Panchami*. |
|
|
|
For more details see [https://aclanthology.org/R13-1015.pdf](https://aclanthology.org/R13-1015.pdf) |
|
""" |
|
|
|
_URL = "http://www.derczynski.com/resources/named_timex.tar.bz2" |
|
_TRAIN_FILE = "ntimex-train.conll" |
|
_TEST_FILE = "ntimex-eval.conll" |
|
|
|
class NamedTimexesConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for NamedTimexes""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for NamedTimexes. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(NamedTimexesConfig, self).__init__(**kwargs) |
|
|
|
|
|
class NamedTimexes(datasets.GeneratorBasedBuilder): |
|
"""NamedTimexes dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
NamedTimexesConfig(name="named-timexes", version=datasets.Version("1.0.0"), description="Named Temporal Expressions dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ntimex_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"T", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://aclanthology.org/R13-1015.pdf", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
|
|
data_files = { |
|
"train": os.path.join(downloaded_file, _TRAIN_FILE), |
|
"test": os.path.join(downloaded_file, _TEST_FILE), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["test"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
guid = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
tokens = [] |
|
ntimex_tags = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ntimex_tags": ntimex_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ntimex_tags = [] |
|
else: |
|
|
|
fields = line.split("\t") |
|
tokens.append(fields[0]) |
|
ntimex_tags.append(fields[1].rstrip()) |
|
|
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ntimex_tags": ntimex_tags, |
|
} |
|
|