Datasets:
Tasks:
Text Classification
Sub-tasks:
fact-checking
Languages:
Danish
Size:
1K<n<10K
Tags:
stance-detection
License:
# coding=utf-8 | |
# Copyright 2022 Leon Derczynski, HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Danish Stance Dataset DAST""" | |
from collections import defaultdict | |
import glob | |
import json | |
import os | |
import sys | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{lillie-etal-2019-joint, | |
title = "Joint Rumour Stance and Veracity Prediction", | |
author = "Lillie, Anders Edelbo and | |
Middelboe, Emil Refsgaard and | |
Derczynski, Leon", | |
booktitle = "Proceedings of the 22nd Nordic Conference on Computational Linguistics", | |
month = sep # "{--}" # oct, | |
year = "2019", | |
address = "Turku, Finland", | |
publisher = {Link{\"o}ping University Electronic Press}, | |
url = "https://aclanthology.org/W19-6122", | |
pages = "208--221", | |
} | |
""" | |
_DESCRIPTION = """\ | |
This dataset presents a series of stories on Reddit and the conversation around | |
them, annotated for stance. Stories are also annotated for veracity. | |
For more details see https://aclanthology.org/W19-6122/ | |
""" | |
_URL = "dast.jsonl" | |
class DastConfig(datasets.BuilderConfig): | |
"""BuilderConfig for IPM NEL""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for IPM NEL. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(DastConfig, self).__init__(**kwargs) | |
class Dast(datasets.GeneratorBasedBuilder): | |
"""Dast dataset.""" | |
BUILDER_CONFIGS = [ | |
DastConfig(name="dkstance", version=datasets.Version("1.0.0"), description="Danish Stance"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"native_id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"parent_id": datasets.Value("string"), | |
"parent_text": datasets.Value("string"), | |
"parent_stance": datasets.features.ClassLabel( | |
names=[ | |
"Supporting", | |
"Denying", | |
"Querying", | |
"Commenting", | |
] | |
), | |
"source_id": datasets.Value("string"), | |
"source_text": datasets.Value("string"), | |
"source_stance": datasets.features.ClassLabel( | |
names=[ | |
"Supporting", | |
"Denying", | |
"Querying", | |
"Commenting", | |
] | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://aclanthology.org/W19-6122/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
downloaded_file = dl_manager.download_and_extract(_URL) | |
print(downloaded_file) | |
data_files = { | |
"dast": downloaded_file, | |
} | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files['dast'], "split":"train"}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files['dast'], "split":"validation"}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files['dast'], "split":"test"}), | |
] | |
def unpack(self, entry, parent_id = None, source_id = None): | |
if isinstance(entry, dict): | |
e = entry['comment'] | |
original_id = e['comment_id'] | |
text = e['text'] | |
parent_id = e['parent_id'] | |
parent_stance = e['SDQC_Parent'] | |
source_id = e['submission_id'] | |
source_stance = e['SDQC_Submission'] | |
self.texts[original_id] = text | |
instance = { | |
"id":self.guid, | |
"native_id":original_id, | |
"text":text, | |
"parent_id":parent_id, | |
"parent_text":self.texts[parent_id], | |
"parent_stance":parent_stance, | |
"source_id":source_id, | |
"source_text":self.texts[source_id], | |
"source_stance":source_stance, | |
} | |
self.id_mapper[e['comment_id']] = self.guid | |
self.guid += 1 | |
yield instance | |
elif isinstance(entry, list): | |
for sub_entry in entry: | |
yield from self.unpack(sub_entry, parent_id=parent_id, source_id=source_id) | |
def process_block(self, block): | |
j = json.loads(block) | |
s = j['redditSubmission'] | |
descr = s['RumourDescription'] | |
source_id = s['submission_id'] | |
#print(i, '', descr, '', '', s['title'], s['SourceSDQC']) | |
self.id_mapper[source_id] = self.guid | |
self.guid += 1 | |
self.texts[source_id] = s['title'] | |
yield from self.unpack(j['branches'], source_id = 0, parent_id = 0) | |
def _generate_examples(self, filepath, split): | |
logger.info("⏳ Generating %s examples from = %s", (split, filepath)) | |
def _deleted(): | |
return "[deleted]" | |
self.guid = 0 | |
self.id_mapper = {} | |
self.texts = defaultdict(_deleted) | |
partition_sources = () | |
if split == 'train': | |
partition_sources = ('8sjevz', 'a0954m', 'a1gsmt', 'a2fpjr', 'a6o3us', 'ax70y5', 'axnshu', 'b23eat', 'b2xrgd', 'b72gok', 'b7aybw', 'b7ohqt', 'bb9iqt') | |
elif split == 'validation': | |
partition_sources = ('6v1ivh', '76y6rb', '7r9ouo', '8192oe', '83l9nm', '8agt1s', '8clb74', '8k6lcb') | |
elif split == 'test': | |
partition_sources = ('3qc12m', '3ud5z9', '53u5j7', '5emjyw', '5pfq1r', '5t1h6y', '60il0b', '67c2zf', '6jqtkm', '6nz7dy', '6szxwj', '6tm5kp') | |
with open(filepath, 'r', encoding="utf-8") as dastfile: | |
for line in dastfile: | |
instances = self.process_block(line.strip()) | |
for instance in instances: | |
if instance['source_id'] in partition_sources: | |
yield instance['id'], instance |