Datasets:
Tasks:
Text Classification
Sub-tasks:
fact-checking
Languages:
Danish
Size:
1K<n<10K
Tags:
stance-detection
License:
add reader for DAST
Browse files- dast.jsonl +0 -0
- dataset_infos.json +1 -0
- dkstance.py +199 -0
dast.jsonl
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dkstance": {"description": "This dataset presents a series of stories on Reddit and the conversation around\nthem, annotated for stance. Stories are also annotated for veracity.\n\nFor more details see https://aclanthology.org/W19-6122/\n", "citation": "@inproceedings{lillie-etal-2019-joint,\n title = \"Joint Rumour Stance and Veracity Prediction\",\n author = \"Lillie, Anders Edelbo and\n Middelboe, Emil Refsgaard and\n Derczynski, Leon\",\n booktitle = \"Proceedings of the 22nd Nordic Conference on Computational Linguistics\",\n month = sep # \"{--}\" # oct,\n year = \"2019\",\n address = \"Turku, Finland\",\n publisher = {Link{\"o}ping University Electronic Press},\n url = \"https://aclanthology.org/W19-6122\",\n pages = \"208--221\",\n}\n", "homepage": "https://aclanthology.org/W19-6122/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "native_id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "parent_text": {"dtype": "string", "id": null, "_type": "Value"}, "parent_stance": {"num_classes": 4, "names": ["Supporting", "Denying", "Querying", "Commenting"], "id": null, "_type": "ClassLabel"}, "source_id": {"dtype": "string", "id": null, "_type": "Value"}, "source_text": {"dtype": "string", "id": null, "_type": "Value"}, "source_stance": {"num_classes": 4, "names": ["Supporting", "Denying", "Querying", "Commenting"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "dast", "config_name": "dkstance", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2446983, "num_examples": 3122, "dataset_name": "dast"}, "validation": {"name": "validation", "num_bytes": 694731, "num_examples": 1066, "dataset_name": "dast"}, "test": {"name": "test", "num_bytes": 730762, "num_examples": 1060, "dataset_name": "dast"}}, "download_checksums": {"dast.jsonl": {"num_bytes": 4944186, "checksum": "a397a77469fc7fe11c7621f2e619f928a28ece934bd6c11b179b58154a70b450"}}, "download_size": 4944186, "post_processing_size": null, "dataset_size": 3872476, "size_in_bytes": 8816662}}
|
dkstance.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Leon Derczynski, HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Danish Stance Dataset DAST"""
|
18 |
+
|
19 |
+
from collections import defaultdict
|
20 |
+
import glob
|
21 |
+
import json
|
22 |
+
import os
|
23 |
+
import sys
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
logger = datasets.logging.get_logger(__name__)
|
28 |
+
|
29 |
+
_CITATION = """\
|
30 |
+
@inproceedings{lillie-etal-2019-joint,
|
31 |
+
title = "Joint Rumour Stance and Veracity Prediction",
|
32 |
+
author = "Lillie, Anders Edelbo and
|
33 |
+
Middelboe, Emil Refsgaard and
|
34 |
+
Derczynski, Leon",
|
35 |
+
booktitle = "Proceedings of the 22nd Nordic Conference on Computational Linguistics",
|
36 |
+
month = sep # "{--}" # oct,
|
37 |
+
year = "2019",
|
38 |
+
address = "Turku, Finland",
|
39 |
+
publisher = {Link{\"o}ping University Electronic Press},
|
40 |
+
url = "https://aclanthology.org/W19-6122",
|
41 |
+
pages = "208--221",
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DESCRIPTION = """\
|
46 |
+
This dataset presents a series of stories on Reddit and the conversation around
|
47 |
+
them, annotated for stance. Stories are also annotated for veracity.
|
48 |
+
|
49 |
+
For more details see https://aclanthology.org/W19-6122/
|
50 |
+
"""
|
51 |
+
|
52 |
+
_URL = "dast.jsonl"
|
53 |
+
|
54 |
+
|
55 |
+
class DastConfig(datasets.BuilderConfig):
|
56 |
+
"""BuilderConfig for IPM NEL"""
|
57 |
+
|
58 |
+
def __init__(self, **kwargs):
|
59 |
+
"""BuilderConfig for IPM NEL.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
**kwargs: keyword arguments forwarded to super.
|
63 |
+
"""
|
64 |
+
super(DastConfig, self).__init__(**kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
class Dast(datasets.GeneratorBasedBuilder):
|
69 |
+
|
70 |
+
|
71 |
+
"""Dast dataset."""
|
72 |
+
|
73 |
+
BUILDER_CONFIGS = [
|
74 |
+
DastConfig(name="dkstance", version=datasets.Version("1.0.0"), description="Danish Stance"),
|
75 |
+
]
|
76 |
+
|
77 |
+
def _info(self):
|
78 |
+
return datasets.DatasetInfo(
|
79 |
+
description=_DESCRIPTION,
|
80 |
+
features=datasets.Features(
|
81 |
+
{
|
82 |
+
"id": datasets.Value("string"),
|
83 |
+
"native_id": datasets.Value("string"),
|
84 |
+
"text": datasets.Value("string"),
|
85 |
+
"parent_id": datasets.Value("string"),
|
86 |
+
"parent_text": datasets.Value("string"),
|
87 |
+
"parent_stance": datasets.features.ClassLabel(
|
88 |
+
names=[
|
89 |
+
"Supporting",
|
90 |
+
"Denying",
|
91 |
+
"Querying",
|
92 |
+
"Commenting",
|
93 |
+
]
|
94 |
+
),
|
95 |
+
"source_id": datasets.Value("string"),
|
96 |
+
"source_text": datasets.Value("string"),
|
97 |
+
"source_stance": datasets.features.ClassLabel(
|
98 |
+
names=[
|
99 |
+
"Supporting",
|
100 |
+
"Denying",
|
101 |
+
"Querying",
|
102 |
+
"Commenting",
|
103 |
+
]
|
104 |
+
),
|
105 |
+
|
106 |
+
}
|
107 |
+
),
|
108 |
+
supervised_keys=None,
|
109 |
+
homepage="https://aclanthology.org/W19-6122/",
|
110 |
+
citation=_CITATION,
|
111 |
+
)
|
112 |
+
|
113 |
+
def _split_generators(self, dl_manager):
|
114 |
+
"""Returns SplitGenerators."""
|
115 |
+
downloaded_file = dl_manager.download_and_extract(_URL)
|
116 |
+
print(downloaded_file)
|
117 |
+
data_files = {
|
118 |
+
"dast": downloaded_file,
|
119 |
+
}
|
120 |
+
|
121 |
+
return [
|
122 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files['dast'], "split":"train"}),
|
123 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files['dast'], "split":"validation"}),
|
124 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files['dast'], "split":"test"}),
|
125 |
+
]
|
126 |
+
|
127 |
+
|
128 |
+
def unpack(self, entry, parent_id = None, source_id = None):
|
129 |
+
|
130 |
+
if isinstance(entry, dict):
|
131 |
+
e = entry['comment']
|
132 |
+
original_id = e['comment_id']
|
133 |
+
text = e['text']
|
134 |
+
parent_id = e['parent_id']
|
135 |
+
parent_stance = e['SDQC_Parent']
|
136 |
+
source_id = e['submission_id']
|
137 |
+
source_stance = e['SDQC_Submission']
|
138 |
+
|
139 |
+
self.texts[original_id] = text
|
140 |
+
|
141 |
+
instance = {
|
142 |
+
"id":self.guid,
|
143 |
+
"native_id":original_id,
|
144 |
+
"text":text,
|
145 |
+
"parent_id":parent_id,
|
146 |
+
"parent_text":self.texts[parent_id],
|
147 |
+
"parent_stance":parent_stance,
|
148 |
+
"source_id":source_id,
|
149 |
+
"source_text":self.texts[source_id],
|
150 |
+
"source_stance":source_stance,
|
151 |
+
}
|
152 |
+
|
153 |
+
self.id_mapper[e['comment_id']] = self.guid
|
154 |
+
self.guid += 1
|
155 |
+
yield instance
|
156 |
+
|
157 |
+
elif isinstance(entry, list):
|
158 |
+
for sub_entry in entry:
|
159 |
+
yield from self.unpack(sub_entry, parent_id=parent_id, source_id=source_id)
|
160 |
+
|
161 |
+
|
162 |
+
def process_block(self, block):
|
163 |
+
|
164 |
+
j = json.loads(block)
|
165 |
+
s = j['redditSubmission']
|
166 |
+
descr = s['RumourDescription']
|
167 |
+
source_id = s['submission_id']
|
168 |
+
#print(i, '', descr, '', '', s['title'], s['SourceSDQC'])
|
169 |
+
self.id_mapper[source_id] = self.guid
|
170 |
+
self.guid += 1
|
171 |
+
self.texts[source_id] = s['title']
|
172 |
+
|
173 |
+
yield from self.unpack(j['branches'], source_id = 0, parent_id = 0)
|
174 |
+
|
175 |
+
|
176 |
+
def _generate_examples(self, filepath, split):
|
177 |
+
logger.info("⏳ Generating %s examples from = %s", (split, filepath))
|
178 |
+
|
179 |
+
def _deleted():
|
180 |
+
return "[deleted]"
|
181 |
+
|
182 |
+
self.guid = 0
|
183 |
+
self.id_mapper = {}
|
184 |
+
self.texts = defaultdict(_deleted)
|
185 |
+
|
186 |
+
partition_sources = ()
|
187 |
+
if split == 'train':
|
188 |
+
partition_sources = ('8sjevz', 'a0954m', 'a1gsmt', 'a2fpjr', 'a6o3us', 'ax70y5', 'axnshu', 'b23eat', 'b2xrgd', 'b72gok', 'b7aybw', 'b7ohqt', 'bb9iqt')
|
189 |
+
elif split == 'validation':
|
190 |
+
partition_sources = ('6v1ivh', '76y6rb', '7r9ouo', '8192oe', '83l9nm', '8agt1s', '8clb74', '8k6lcb')
|
191 |
+
elif split == 'test':
|
192 |
+
partition_sources = ('3qc12m', '3ud5z9', '53u5j7', '5emjyw', '5pfq1r', '5t1h6y', '60il0b', '67c2zf', '6jqtkm', '6nz7dy', '6szxwj', '6tm5kp')
|
193 |
+
|
194 |
+
with open(filepath, 'r', encoding="utf-8") as dastfile:
|
195 |
+
for line in dastfile:
|
196 |
+
instances = self.process_block(line.strip())
|
197 |
+
for instance in instances:
|
198 |
+
if instance['source_id'] in partition_sources:
|
199 |
+
yield instance['id'], instance
|