leondz commited on
Commit
57df3ab
·
1 Parent(s): 6646c12

add reader for BTC

Browse files
Files changed (2) hide show
  1. broad_twitter_corpus.py +165 -0
  2. dataset_infos.json +1 -0
broad_twitter_corpus.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
18
+
19
+ import os
20
+
21
+ import datasets
22
+
23
+
24
+ logger = datasets.logging.get_logger(__name__)
25
+
26
+
27
+ _CITATION = """\
28
+ @inproceedings{derczynski2016broad,
29
+ title={Broad twitter corpus: A diverse named entity recognition resource},
30
+ author={Derczynski, Leon and Bontcheva, Kalina and Roberts, Ian},
31
+ booktitle={Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers},
32
+ pages={1169--1179},
33
+ year={2016}
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """\
38
+ This is the Broad Twitter corpus, a dataset of tweets collected over stratified times, places and social uses.
39
+ The goal is to represent a broad range of activities, giving a dataset more representative of the language used
40
+ in this hardest of social media formats to process. Further, the BTC is annotated for named entities.
41
+
42
+ For more details see [https://aclanthology.org/C16-1111/](https://aclanthology.org/C16-1111/)
43
+ """
44
+
45
+ _URL = "https://github.com/GateNLP/broad_twitter_corpus/archive/refs/heads/master.zip"
46
+ _subpath = "broad_twitter_corpus-master/"
47
+ _A_FILE = _subpath + "a.conll"
48
+ _B_FILE = _subpath + "b.conll"
49
+ _E_FILE = _subpath + "e.conll"
50
+ _F_FILE = _subpath + "f.conll"
51
+ _G_FILE = _subpath + "g.conll"
52
+ _H_FILE = _subpath + "h.conll"
53
+
54
+ # _TRAINING_FILE = "train.txt"
55
+ _DEV_FILE = _H_FILE
56
+ _TEST_FILE = _F_FILE
57
+
58
+
59
+ class BroadTwitterCorpusConfig(datasets.BuilderConfig):
60
+ """BuilderConfig for BroadTwitterCorpus"""
61
+
62
+ def __init__(self, **kwargs):
63
+ """BuilderConfig for BroadTwitterCorpus.
64
+
65
+ Args:
66
+ **kwargs: keyword arguments forwarded to super.
67
+ """
68
+ super(BroadTwitterCorpusConfig, self).__init__(**kwargs)
69
+
70
+
71
+ class BroadTwitterCorpus(datasets.GeneratorBasedBuilder):
72
+ """BroadTwitterCorpus dataset."""
73
+
74
+ BUILDER_CONFIGS = [
75
+ BroadTwitterCorpusConfig(name="broad-twitter-corpus", version=datasets.Version("1.0.0"), description="Broad Twitter Corpus"),
76
+ ]
77
+
78
+ def _info(self):
79
+ return datasets.DatasetInfo(
80
+ description=_DESCRIPTION,
81
+ features=datasets.Features(
82
+ {
83
+ "id": datasets.Value("string"),
84
+ "tokens": datasets.Sequence(datasets.Value("string")),
85
+ "ner_tags": datasets.Sequence(
86
+ datasets.features.ClassLabel(
87
+ names=[
88
+ "O",
89
+ "B-PER",
90
+ "I-PER",
91
+ "B-ORG",
92
+ "I-ORG",
93
+ "B-LOC",
94
+ "I-LOC",
95
+ ]
96
+ )
97
+ ),
98
+ }
99
+ ),
100
+ supervised_keys=None,
101
+ homepage="https://aclanthology.org/C16-1111/",
102
+ citation=_CITATION,
103
+ )
104
+
105
+ def _split_generators(self, dl_manager):
106
+ """Returns SplitGenerators."""
107
+ downloaded_file = dl_manager.download_and_extract(_URL)
108
+
109
+ data_files = {
110
+ "a": os.path.join(downloaded_file, _A_FILE),
111
+ "b": os.path.join(downloaded_file, _B_FILE),
112
+ "e": os.path.join(downloaded_file, _E_FILE),
113
+ "f": os.path.join(downloaded_file, _F_FILE),
114
+ "g": os.path.join(downloaded_file, _G_FILE),
115
+ "h": os.path.join(downloaded_file, _H_FILE),
116
+ "dev": os.path.join(downloaded_file, _DEV_FILE),
117
+ "test": os.path.join(downloaded_file, _TEST_FILE),
118
+ }
119
+
120
+ """
121
+ btc_section_a = datasets.SplitGenerator(name="BTC_A", gen_kwargs={"filepath": data_files["a"]})
122
+ btc_section_b = datasets.SplitGenerator(name="BTC_B", gen_kwargs={"filepath": data_files["b"]})
123
+ btc_section_e = datasets.SplitGenerator(name="BTC_E", gen_kwargs={"filepath": data_files["e"]})
124
+ btc_section_f = datasets.SplitGenerator(name="BTC_F", gen_kwargs={"filepath": data_files["f"]})
125
+ btc_section_g = datasets.SplitGenerator(name="BTC_G", gen_kwargs={"filepath": data_files["g"]})
126
+ btc_section_h = datasets.SplitGenerator(name="BTC_H", gen_kwargs={"filepath": data_files["h"]})
127
+ """
128
+ return [
129
+ datasets.SplitGenerator(name=datasets.Split.TRAIN,
130
+ gen_kwargs={"filepaths": [data_files['a'], data_files['b'], data_files['e'], data_files['g']]}
131
+ ),
132
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [data_files["dev"]]}),
133
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [data_files["test"]]}),
134
+ ]
135
+
136
+ def _generate_examples(self, filepaths):
137
+ guid = 0
138
+ for filepath in filepaths:
139
+ with open(filepath, encoding="utf-8") as f:
140
+ logger.info("⏳ Generating examples from = %s", filepath)
141
+ tokens = []
142
+ ner_tags = []
143
+ for line in f:
144
+ if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n":
145
+ if tokens:
146
+ yield guid, {
147
+ "id": str(guid),
148
+ "tokens": tokens,
149
+ "ner_tags": ner_tags,
150
+ }
151
+ guid += 1
152
+ tokens = []
153
+ ner_tags = []
154
+ else:
155
+ # btc entries are tab separated
156
+ fields = line.split("\t")
157
+ tokens.append(fields[0])
158
+ ner_tags.append(fields[1].rstrip())
159
+ # last example
160
+ yield guid, {
161
+ "id": str(guid),
162
+ "tokens": tokens,
163
+ "ner_tags": ner_tags,
164
+ }
165
+ guid += 1 # for when files roll over
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"broad-twitter-corpus": {"description": "This is the Broad Twitter corpus, a dataset of tweets collected over stratified times, places and social uses. \nThe goal is to represent a broad range of activities, giving a dataset more representative of the language used \nin this hardest of social media formats to process. Further, the BTC is annotated for named entities.\n\nFor more details see [https://aclanthology.org/C16-1111/](https://aclanthology.org/C16-1111/)\n", "citation": "@inproceedings{derczynski2016broad,\n title={Broad twitter corpus: A diverse named entity recognition resource},\n author={Derczynski, Leon and Bontcheva, Kalina and Roberts, Ian},\n booktitle={Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers},\n pages={1169--1179},\n year={2016}\n}\n", "homepage": "https://aclanthology.org/C16-1111/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 7, "names": ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "broad_twitter_corpus", "config_name": "broad-twitter-corpus", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1522066, "num_examples": 5342, "dataset_name": "broad_twitter_corpus"}, "validation": {"name": "validation", "num_bytes": 514159, "num_examples": 2002, "dataset_name": "broad_twitter_corpus"}, "test": {"name": "test", "num_bytes": 621542, "num_examples": 2002, "dataset_name": "broad_twitter_corpus"}}, "download_checksums": {"https://github.com/GateNLP/broad_twitter_corpus/archive/refs/heads/master.zip": {"num_bytes": 39344594, "checksum": "4e1d1a7d0d9e7563f5df2adf078c25a7305ab6a5e74eadae123881e4d175a12f"}}, "download_size": 39344594, "post_processing_size": null, "dataset_size": 2657767, "size_in_bytes": 42002361}}