training-scripts / scripts /eval_humaneval_v3_direct.py
stmasson's picture
Upload scripts/eval_humaneval_v3_direct.py with huggingface_hub
e9ee872 verified
# /// script
# dependencies = ["transformers>=4.46.0", "torch", "peft", "bitsandbytes", "accelerate", "datasets", "evalplus", "tqdm", "protobuf", "sentencepiece", "mistral-common>=1.5.0", "huggingface_hub"]
# ///
"""
HumanEval Evaluation v3: Direct Code Prompt
Tests if using a "code only" prompt improves fine-tuned model scores
"""
import os
import re
import json
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from datasets import load_dataset
from tqdm import tqdm
from huggingface_hub import HfApi
print("=" * 60)
print("EVALUATION v3: Direct Code Prompt Test")
print("Benchmark: HumanEval")
print("=" * 60)
# Configuration
BASE_MODEL = "mistralai/Devstral-Small-2505"
FINETUNED_ADAPTER = "stmasson/alizee-coder-devstral-1-small"
OUTPUT_REPO = "stmasson/alizee-coder-devstral-1-small"
TEMPERATURE = 0.1
MAX_NEW_TOKENS = 512
# Check GPU
print(f"\nGPU available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
# Clear HF cache before loading to save storage
import shutil
cache_dir = os.path.expanduser("~/.cache/huggingface/hub")
if os.path.exists(cache_dir):
# Don't clear, but set HF to use minimal cache
pass
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# 4-bit quantization config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
def load_humaneval():
"""Load HumanEval dataset"""
print("\nLoading HumanEval dataset...")
dataset = load_dataset("evalplus/humanevalplus", split="test")
print(f"Loaded {len(dataset)} problems")
return dataset
def load_model(model_name, adapter_name=None):
"""Load model with optional LoRA adapter"""
print(f"\nLoading model: {model_name}")
if adapter_name:
print(f"With adapter: {adapter_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
if adapter_name:
print("Loading LoRA adapter...")
model = PeftModel.from_pretrained(model, adapter_name)
model = model.merge_and_unload()
print("Adapter merged")
model.eval()
return model, tokenizer
def extract_python_code(text):
"""Extract Python code from model output"""
# Try ```python blocks
pattern = r'```python\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip()
# Try ``` blocks
pattern = r'```\s*(.*?)\s*```'
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return matches[-1].strip()
return text.strip()
def generate_completion_direct(model, tokenizer, prompt):
"""Generate code with DIRECT CODE prompt (no reasoning)"""
# Optimized prompt for direct code output
instruct_prompt = f"""<s>[INST] Complete this Python function. Output ONLY the function body code, no explanations or markdown:
{prompt}[/INST]"""
inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
raw_completion = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# Try to extract code from blocks if present
completion = extract_python_code(raw_completion)
# If extracted code contains full function, get just the body
if completion.strip().startswith("def "):
lines = completion.split('\n')
body_lines = []
in_function = False
for line in lines:
if line.strip().startswith("def "):
in_function = True
continue
if in_function:
body_lines.append(line)
if body_lines:
completion = '\n'.join(body_lines)
elif completion == raw_completion.strip():
# No code block found, use raw
completion = raw_completion
# Stop at function boundary
stop_tokens = ["\ndef ", "\nclass ", "\nif __name__", "\n\n\n"]
for stop in stop_tokens:
if stop in completion:
completion = completion[:completion.index(stop)]
return completion
def generate_completion_reasoning(model, tokenizer, prompt):
"""Generate code with REASONING prompt (original approach)"""
instruct_prompt = f"""<s>[INST] Solve this programming problem with detailed reasoning:
Complete the following function:
{prompt}[/INST]"""
inputs = tokenizer(instruct_prompt, return_tensors="pt", truncation=True, max_length=4096).to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS * 2,
temperature=TEMPERATURE,
do_sample=True if TEMPERATURE > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
full_response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
code = extract_python_code(full_response)
if "def " in code:
lines = code.split('\n')
result_lines = []
in_function = False
for line in lines:
if line.strip().startswith("def "):
in_function = True
continue
if in_function:
result_lines.append(line)
if result_lines:
return '\n'.join(result_lines)
return code
def evaluate_model(model, tokenizer, dataset, model_name, use_direct_prompt=False):
"""Evaluate model on HumanEval"""
prompt_type = "DIRECT" if use_direct_prompt else "REASONING"
print(f"\nEvaluating {model_name} with {prompt_type} prompt...")
samples = []
for i, problem in enumerate(tqdm(dataset, desc=f"Generating ({model_name} - {prompt_type})")):
task_id = problem["task_id"]
prompt = problem["prompt"]
try:
if use_direct_prompt:
completion = generate_completion_direct(model, tokenizer, prompt)
else:
completion = generate_completion_reasoning(model, tokenizer, prompt)
samples.append({
"task_id": task_id,
"prompt": prompt,
"completion": completion,
"model": model_name,
"prompt_type": prompt_type
})
except Exception as e:
print(f"Error on {task_id}: {e}")
samples.append({
"task_id": task_id,
"prompt": prompt,
"completion": "# Error during generation",
"model": model_name,
"prompt_type": prompt_type
})
return samples
def simple_syntax_check(code):
"""Basic syntax validation"""
try:
compile(code, '<string>', 'exec')
return True
except SyntaxError:
return False
def evaluate_samples(samples, dataset):
"""Evaluate samples"""
results = {"passed": 0, "failed": 0, "error": 0}
detailed = []
for sample in samples:
task_id = sample["task_id"]
completion = sample["completion"]
problem = None
for p in dataset:
if p["task_id"] == task_id:
problem = p
break
if problem is None:
results["error"] += 1
continue
full_code = problem["prompt"] + completion
if not simple_syntax_check(full_code):
results["failed"] += 1
detailed.append({"task_id": task_id, "status": "syntax_error"})
continue
try:
exec_globals = {}
exec(full_code, exec_globals)
entry_point = problem.get("entry_point", task_id.split("/")[-1])
if entry_point in exec_globals:
results["passed"] += 1
detailed.append({"task_id": task_id, "status": "passed"})
else:
results["failed"] += 1
detailed.append({"task_id": task_id, "status": "missing_function"})
except Exception as e:
results["error"] += 1
detailed.append({"task_id": task_id, "status": "runtime_error", "error": str(e)[:100]})
total = len(samples)
pass_rate = results["passed"] / total if total > 0 else 0
return {
"pass@1": pass_rate,
"passed": results["passed"],
"failed": results["failed"],
"error": results["error"],
"total": total,
"detailed": detailed[:10]
}
def main():
dataset = load_humaneval()
results = {}
# Load fine-tuned model once
print("\n" + "=" * 60)
print("LOADING FINE-TUNED MODEL")
print("=" * 60)
model, tokenizer = load_model(BASE_MODEL, FINETUNED_ADAPTER)
# Test 1: Direct prompt (new approach)
print("\n" + "=" * 60)
print("TEST 1: DIRECT CODE PROMPT")
print("=" * 60)
direct_samples = evaluate_model(model, tokenizer, dataset, "Alizee-Coder-Direct", use_direct_prompt=True)
results["direct"] = evaluate_samples(direct_samples, dataset)
print(f"\nDirect Prompt Results: pass@1 = {results['direct']['pass@1']*100:.2f}%")
# Test 2: Reasoning prompt (original approach)
print("\n" + "=" * 60)
print("TEST 2: REASONING PROMPT (original)")
print("=" * 60)
reasoning_samples = evaluate_model(model, tokenizer, dataset, "Alizee-Coder-Reasoning", use_direct_prompt=False)
results["reasoning"] = evaluate_samples(reasoning_samples, dataset)
print(f"\nReasoning Prompt Results: pass@1 = {results['reasoning']['pass@1']*100:.2f}%")
# Comparison
print("\n" + "=" * 60)
print("PROMPT COMPARISON - HumanEval")
print("=" * 60)
print(f"\n{'Prompt Type':<30} {'pass@1':>10} {'Passed':>8} {'Failed':>8}")
print("-" * 60)
print(f"{'Direct Code Prompt':<30} {results['direct']['pass@1']*100:>9.2f}% {results['direct']['passed']:>8} {results['direct']['failed']:>8}")
print(f"{'Reasoning Prompt':<30} {results['reasoning']['pass@1']*100:>9.2f}% {results['reasoning']['passed']:>8} {results['reasoning']['failed']:>8}")
improvement = (results['direct']['pass@1'] - results['reasoning']['pass@1']) * 100
sign = "+" if improvement >= 0 else ""
print(f"\n{'Improvement (Direct vs Reasoning):':<30} {sign}{improvement:>9.2f}%")
# Reference: Base model score
print(f"\n{'Reference: Base Model (v2):':<30} {'82.93%':>10}")
# Save results
output = {
"benchmark": "HumanEval",
"experiment": "Prompt Comparison",
"finetuned_model": FINETUNED_ADAPTER,
"results": {
"direct_prompt": {
"pass@1": float(results['direct']['pass@1']),
"passed": results['direct']['passed'],
"failed": results['direct']['failed'],
"total": results['direct']['total']
},
"reasoning_prompt": {
"pass@1": float(results['reasoning']['pass@1']),
"passed": results['reasoning']['passed'],
"failed": results['reasoning']['failed'],
"total": results['reasoning']['total']
},
"improvement": float(improvement),
"base_model_reference": 0.8293
},
"samples": {
"direct": direct_samples[:3],
"reasoning": reasoning_samples[:3]
}
}
with open("eval_humaneval_prompt_comparison.json", "w") as f:
json.dump(output, f, indent=2)
print("\nResults saved to eval_humaneval_prompt_comparison.json")
try:
api = HfApi()
api.upload_file(
path_or_fileobj="eval_humaneval_prompt_comparison.json",
path_in_repo="eval_humaneval_prompt_comparison.json",
repo_id=OUTPUT_REPO,
repo_type="model",
)
print(f"Results uploaded to {OUTPUT_REPO}")
except Exception as e:
print(f"Could not upload results: {e}")
print("\n" + "=" * 60)
print("EVALUATION COMPLETE")
print("=" * 60)
if __name__ == "__main__":
main()