Upload folder using huggingface_hub
Browse files- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/best-model.pt +3 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/dev.tsv +0 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/final-model.pt +3 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/loss.tsv +11 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/test.tsv +0 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/training.log +240 -0
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81a857b706de898b97dfd7c55c8f3e2fbb54cd51d3c5a99a977243ad5b863104
|
3 |
+
size 443334288
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7d823e32ff51053fedb4deacb269b6e284b79126a754540790f1aabb3754023
|
3 |
+
size 443334491
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 16:05:54 0.0000 0.5415 0.1324 0.6817 0.7640 0.7205 0.5916
|
3 |
+
2 16:08:52 0.0000 0.1272 0.1110 0.7712 0.8225 0.7960 0.6838
|
4 |
+
3 16:11:53 0.0000 0.0794 0.1956 0.7284 0.8001 0.7626 0.6522
|
5 |
+
4 16:14:51 0.0000 0.0551 0.1651 0.8434 0.8419 0.8426 0.7454
|
6 |
+
5 16:17:50 0.0000 0.0419 0.2098 0.8085 0.8270 0.8177 0.7159
|
7 |
+
6 16:20:48 0.0000 0.0267 0.2401 0.8017 0.8265 0.8139 0.7105
|
8 |
+
7 16:23:48 0.0000 0.0208 0.2017 0.8137 0.8408 0.8270 0.7303
|
9 |
+
8 16:26:47 0.0000 0.0151 0.2118 0.8235 0.8419 0.8326 0.7365
|
10 |
+
9 16:29:45 0.0000 0.0111 0.2195 0.8215 0.8408 0.8310 0.7311
|
11 |
+
10 16:32:44 0.0000 0.0064 0.2171 0.8227 0.8396 0.8311 0.7334
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4/training.log
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-09-04 16:02:59,537 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-09-04 16:02:59,538 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-09-04 16:02:59,538 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-09-04 16:02:59,538 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
53 |
+
2023-09-04 16:02:59,538 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-09-04 16:02:59,538 Train: 5901 sentences
|
55 |
+
2023-09-04 16:02:59,538 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-09-04 16:02:59,538 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-09-04 16:02:59,538 Training Params:
|
58 |
+
2023-09-04 16:02:59,539 - learning_rate: "3e-05"
|
59 |
+
2023-09-04 16:02:59,539 - mini_batch_size: "4"
|
60 |
+
2023-09-04 16:02:59,539 - max_epochs: "10"
|
61 |
+
2023-09-04 16:02:59,539 - shuffle: "True"
|
62 |
+
2023-09-04 16:02:59,539 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-09-04 16:02:59,539 Plugins:
|
64 |
+
2023-09-04 16:02:59,539 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-09-04 16:02:59,539 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-09-04 16:02:59,539 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-09-04 16:02:59,539 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-09-04 16:02:59,539 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-09-04 16:02:59,539 Computation:
|
70 |
+
2023-09-04 16:02:59,539 - compute on device: cuda:0
|
71 |
+
2023-09-04 16:02:59,539 - embedding storage: none
|
72 |
+
2023-09-04 16:02:59,539 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-09-04 16:02:59,539 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
|
74 |
+
2023-09-04 16:02:59,539 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-09-04 16:02:59,539 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-09-04 16:03:15,886 epoch 1 - iter 147/1476 - loss 2.52871055 - time (sec): 16.35 - samples/sec: 1052.18 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-09-04 16:03:33,176 epoch 1 - iter 294/1476 - loss 1.57041670 - time (sec): 33.64 - samples/sec: 1076.84 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-09-04 16:03:48,492 epoch 1 - iter 441/1476 - loss 1.20260211 - time (sec): 48.95 - samples/sec: 1070.07 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-09-04 16:04:03,889 epoch 1 - iter 588/1476 - loss 1.00409702 - time (sec): 64.35 - samples/sec: 1057.63 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-09-04 16:04:19,482 epoch 1 - iter 735/1476 - loss 0.86487115 - time (sec): 79.94 - samples/sec: 1050.83 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-09-04 16:04:35,541 epoch 1 - iter 882/1476 - loss 0.76585745 - time (sec): 96.00 - samples/sec: 1048.37 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-09-04 16:04:50,167 epoch 1 - iter 1029/1476 - loss 0.70235927 - time (sec): 110.63 - samples/sec: 1039.11 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-09-04 16:05:06,428 epoch 1 - iter 1176/1476 - loss 0.63956363 - time (sec): 126.89 - samples/sec: 1038.51 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-09-04 16:05:22,090 epoch 1 - iter 1323/1476 - loss 0.58984360 - time (sec): 142.55 - samples/sec: 1036.37 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-09-04 16:05:39,018 epoch 1 - iter 1470/1476 - loss 0.54297100 - time (sec): 159.48 - samples/sec: 1038.96 - lr: 0.000030 - momentum: 0.000000
|
86 |
+
2023-09-04 16:05:39,700 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-09-04 16:05:39,700 EPOCH 1 done: loss 0.5415 - lr: 0.000030
|
88 |
+
2023-09-04 16:05:54,073 DEV : loss 0.13243263959884644 - f1-score (micro avg) 0.7205
|
89 |
+
2023-09-04 16:05:54,102 saving best model
|
90 |
+
2023-09-04 16:05:54,575 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-09-04 16:06:09,565 epoch 2 - iter 147/1476 - loss 0.14267517 - time (sec): 14.99 - samples/sec: 981.96 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-09-04 16:06:24,627 epoch 2 - iter 294/1476 - loss 0.14390133 - time (sec): 30.05 - samples/sec: 997.38 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-09-04 16:06:41,452 epoch 2 - iter 441/1476 - loss 0.13701884 - time (sec): 46.88 - samples/sec: 1028.71 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-09-04 16:06:57,177 epoch 2 - iter 588/1476 - loss 0.13648488 - time (sec): 62.60 - samples/sec: 1030.84 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-09-04 16:07:12,917 epoch 2 - iter 735/1476 - loss 0.13592443 - time (sec): 78.34 - samples/sec: 1030.46 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-09-04 16:07:29,367 epoch 2 - iter 882/1476 - loss 0.13220896 - time (sec): 94.79 - samples/sec: 1032.87 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-09-04 16:07:45,479 epoch 2 - iter 1029/1476 - loss 0.13253062 - time (sec): 110.90 - samples/sec: 1031.40 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-09-04 16:08:00,965 epoch 2 - iter 1176/1476 - loss 0.13007434 - time (sec): 126.39 - samples/sec: 1032.26 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-09-04 16:08:18,698 epoch 2 - iter 1323/1476 - loss 0.12881868 - time (sec): 144.12 - samples/sec: 1038.54 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-09-04 16:08:34,338 epoch 2 - iter 1470/1476 - loss 0.12726562 - time (sec): 159.76 - samples/sec: 1038.50 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-09-04 16:08:34,889 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-09-04 16:08:34,889 EPOCH 2 done: loss 0.1272 - lr: 0.000027
|
103 |
+
2023-09-04 16:08:52,595 DEV : loss 0.11097484081983566 - f1-score (micro avg) 0.796
|
104 |
+
2023-09-04 16:08:52,624 saving best model
|
105 |
+
2023-09-04 16:08:53,973 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-09-04 16:09:09,684 epoch 3 - iter 147/1476 - loss 0.08170776 - time (sec): 15.71 - samples/sec: 1040.36 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-09-04 16:09:26,779 epoch 3 - iter 294/1476 - loss 0.07926320 - time (sec): 32.80 - samples/sec: 1035.82 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-09-04 16:09:42,102 epoch 3 - iter 441/1476 - loss 0.07890665 - time (sec): 48.13 - samples/sec: 1029.76 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-09-04 16:09:59,259 epoch 3 - iter 588/1476 - loss 0.08608802 - time (sec): 65.28 - samples/sec: 1033.99 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-09-04 16:10:14,751 epoch 3 - iter 735/1476 - loss 0.08554394 - time (sec): 80.78 - samples/sec: 1030.81 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-09-04 16:10:30,631 epoch 3 - iter 882/1476 - loss 0.08417210 - time (sec): 96.66 - samples/sec: 1028.67 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-09-04 16:10:46,240 epoch 3 - iter 1029/1476 - loss 0.08294887 - time (sec): 112.27 - samples/sec: 1032.47 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-09-04 16:11:02,889 epoch 3 - iter 1176/1476 - loss 0.08096675 - time (sec): 128.91 - samples/sec: 1035.49 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-09-04 16:11:18,410 epoch 3 - iter 1323/1476 - loss 0.07939551 - time (sec): 144.43 - samples/sec: 1032.82 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-09-04 16:11:34,662 epoch 3 - iter 1470/1476 - loss 0.07940718 - time (sec): 160.69 - samples/sec: 1032.94 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-09-04 16:11:35,231 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-09-04 16:11:35,231 EPOCH 3 done: loss 0.0794 - lr: 0.000023
|
118 |
+
2023-09-04 16:11:53,030 DEV : loss 0.19561560451984406 - f1-score (micro avg) 0.7626
|
119 |
+
2023-09-04 16:11:53,059 ----------------------------------------------------------------------------------------------------
|
120 |
+
2023-09-04 16:12:09,713 epoch 4 - iter 147/1476 - loss 0.04872021 - time (sec): 16.65 - samples/sec: 1073.23 - lr: 0.000023 - momentum: 0.000000
|
121 |
+
2023-09-04 16:12:25,032 epoch 4 - iter 294/1476 - loss 0.04571029 - time (sec): 31.97 - samples/sec: 1039.82 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-09-04 16:12:43,266 epoch 4 - iter 441/1476 - loss 0.04514289 - time (sec): 50.21 - samples/sec: 1058.79 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-09-04 16:12:59,665 epoch 4 - iter 588/1476 - loss 0.05058321 - time (sec): 66.60 - samples/sec: 1049.86 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-09-04 16:13:14,986 epoch 4 - iter 735/1476 - loss 0.05049063 - time (sec): 81.93 - samples/sec: 1048.57 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-09-04 16:13:31,978 epoch 4 - iter 882/1476 - loss 0.05456700 - time (sec): 98.92 - samples/sec: 1054.31 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-09-04 16:13:47,311 epoch 4 - iter 1029/1476 - loss 0.05403008 - time (sec): 114.25 - samples/sec: 1049.04 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-09-04 16:14:02,513 epoch 4 - iter 1176/1476 - loss 0.05428571 - time (sec): 129.45 - samples/sec: 1040.02 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-09-04 16:14:17,349 epoch 4 - iter 1323/1476 - loss 0.05492730 - time (sec): 144.29 - samples/sec: 1037.08 - lr: 0.000020 - momentum: 0.000000
|
129 |
+
2023-09-04 16:14:32,781 epoch 4 - iter 1470/1476 - loss 0.05522605 - time (sec): 159.72 - samples/sec: 1038.20 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-09-04 16:14:33,375 ----------------------------------------------------------------------------------------------------
|
131 |
+
2023-09-04 16:14:33,375 EPOCH 4 done: loss 0.0551 - lr: 0.000020
|
132 |
+
2023-09-04 16:14:51,078 DEV : loss 0.1650702804327011 - f1-score (micro avg) 0.8426
|
133 |
+
2023-09-04 16:14:51,108 saving best model
|
134 |
+
2023-09-04 16:14:52,441 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-09-04 16:15:08,589 epoch 5 - iter 147/1476 - loss 0.03825252 - time (sec): 16.15 - samples/sec: 1048.01 - lr: 0.000020 - momentum: 0.000000
|
136 |
+
2023-09-04 16:15:23,847 epoch 5 - iter 294/1476 - loss 0.04275573 - time (sec): 31.40 - samples/sec: 1029.22 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-09-04 16:15:39,381 epoch 5 - iter 441/1476 - loss 0.04602369 - time (sec): 46.94 - samples/sec: 1037.64 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-09-04 16:15:55,702 epoch 5 - iter 588/1476 - loss 0.04441490 - time (sec): 63.26 - samples/sec: 1041.26 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-09-04 16:16:11,802 epoch 5 - iter 735/1476 - loss 0.04204585 - time (sec): 79.36 - samples/sec: 1034.46 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-09-04 16:16:28,332 epoch 5 - iter 882/1476 - loss 0.04087090 - time (sec): 95.89 - samples/sec: 1031.86 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-09-04 16:16:45,623 epoch 5 - iter 1029/1476 - loss 0.04229785 - time (sec): 113.18 - samples/sec: 1036.82 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-09-04 16:17:00,370 epoch 5 - iter 1176/1476 - loss 0.04263744 - time (sec): 127.93 - samples/sec: 1035.84 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-09-04 16:17:16,877 epoch 5 - iter 1323/1476 - loss 0.04146297 - time (sec): 144.43 - samples/sec: 1036.58 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-09-04 16:17:32,485 epoch 5 - iter 1470/1476 - loss 0.04198539 - time (sec): 160.04 - samples/sec: 1035.39 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-09-04 16:17:33,083 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-09-04 16:17:33,084 EPOCH 5 done: loss 0.0419 - lr: 0.000017
|
147 |
+
2023-09-04 16:17:50,720 DEV : loss 0.20976178348064423 - f1-score (micro avg) 0.8177
|
148 |
+
2023-09-04 16:17:50,748 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-09-04 16:18:06,872 epoch 6 - iter 147/1476 - loss 0.02798721 - time (sec): 16.12 - samples/sec: 1056.07 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-09-04 16:18:22,910 epoch 6 - iter 294/1476 - loss 0.02620166 - time (sec): 32.16 - samples/sec: 1031.47 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-09-04 16:18:37,959 epoch 6 - iter 441/1476 - loss 0.02418936 - time (sec): 47.21 - samples/sec: 1014.04 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-09-04 16:18:53,437 epoch 6 - iter 588/1476 - loss 0.02380874 - time (sec): 62.69 - samples/sec: 1017.91 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-09-04 16:19:09,360 epoch 6 - iter 735/1476 - loss 0.02310671 - time (sec): 78.61 - samples/sec: 1025.30 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-09-04 16:19:24,285 epoch 6 - iter 882/1476 - loss 0.02262606 - time (sec): 93.54 - samples/sec: 1018.00 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-09-04 16:19:40,267 epoch 6 - iter 1029/1476 - loss 0.02380293 - time (sec): 109.52 - samples/sec: 1024.96 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-09-04 16:19:57,468 epoch 6 - iter 1176/1476 - loss 0.02415468 - time (sec): 126.72 - samples/sec: 1034.15 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-09-04 16:20:14,977 epoch 6 - iter 1323/1476 - loss 0.02619189 - time (sec): 144.23 - samples/sec: 1039.67 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-09-04 16:20:30,489 epoch 6 - iter 1470/1476 - loss 0.02681190 - time (sec): 159.74 - samples/sec: 1038.55 - lr: 0.000013 - momentum: 0.000000
|
159 |
+
2023-09-04 16:20:31,039 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-09-04 16:20:31,039 EPOCH 6 done: loss 0.0267 - lr: 0.000013
|
161 |
+
2023-09-04 16:20:48,771 DEV : loss 0.24007707834243774 - f1-score (micro avg) 0.8139
|
162 |
+
2023-09-04 16:20:48,800 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-09-04 16:21:03,952 epoch 7 - iter 147/1476 - loss 0.01359181 - time (sec): 15.15 - samples/sec: 1018.09 - lr: 0.000013 - momentum: 0.000000
|
164 |
+
2023-09-04 16:21:19,105 epoch 7 - iter 294/1476 - loss 0.01439497 - time (sec): 30.30 - samples/sec: 992.79 - lr: 0.000013 - momentum: 0.000000
|
165 |
+
2023-09-04 16:21:35,949 epoch 7 - iter 441/1476 - loss 0.01973463 - time (sec): 47.15 - samples/sec: 1005.82 - lr: 0.000012 - momentum: 0.000000
|
166 |
+
2023-09-04 16:21:51,925 epoch 7 - iter 588/1476 - loss 0.01951830 - time (sec): 63.12 - samples/sec: 1005.42 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-09-04 16:22:07,812 epoch 7 - iter 735/1476 - loss 0.01914368 - time (sec): 79.01 - samples/sec: 1012.24 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-09-04 16:22:23,956 epoch 7 - iter 882/1476 - loss 0.02067535 - time (sec): 95.15 - samples/sec: 1015.65 - lr: 0.000011 - momentum: 0.000000
|
169 |
+
2023-09-04 16:22:39,475 epoch 7 - iter 1029/1476 - loss 0.02053550 - time (sec): 110.67 - samples/sec: 1019.44 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-09-04 16:22:55,533 epoch 7 - iter 1176/1476 - loss 0.02017769 - time (sec): 126.73 - samples/sec: 1020.77 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-09-04 16:23:13,472 epoch 7 - iter 1323/1476 - loss 0.01993715 - time (sec): 144.67 - samples/sec: 1031.90 - lr: 0.000010 - momentum: 0.000000
|
172 |
+
2023-09-04 16:23:29,311 epoch 7 - iter 1470/1476 - loss 0.02079057 - time (sec): 160.51 - samples/sec: 1030.96 - lr: 0.000010 - momentum: 0.000000
|
173 |
+
2023-09-04 16:23:30,168 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-09-04 16:23:30,168 EPOCH 7 done: loss 0.0208 - lr: 0.000010
|
175 |
+
2023-09-04 16:23:47,994 DEV : loss 0.20170645415782928 - f1-score (micro avg) 0.827
|
176 |
+
2023-09-04 16:23:48,023 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-09-04 16:24:05,138 epoch 8 - iter 147/1476 - loss 0.01368119 - time (sec): 17.11 - samples/sec: 1033.58 - lr: 0.000010 - momentum: 0.000000
|
178 |
+
2023-09-04 16:24:20,283 epoch 8 - iter 294/1476 - loss 0.01483621 - time (sec): 32.26 - samples/sec: 1013.05 - lr: 0.000009 - momentum: 0.000000
|
179 |
+
2023-09-04 16:24:36,338 epoch 8 - iter 441/1476 - loss 0.01441544 - time (sec): 48.31 - samples/sec: 1028.54 - lr: 0.000009 - momentum: 0.000000
|
180 |
+
2023-09-04 16:24:51,632 epoch 8 - iter 588/1476 - loss 0.01356112 - time (sec): 63.61 - samples/sec: 1023.44 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-09-04 16:25:08,937 epoch 8 - iter 735/1476 - loss 0.01543348 - time (sec): 80.91 - samples/sec: 1025.66 - lr: 0.000008 - momentum: 0.000000
|
182 |
+
2023-09-04 16:25:25,043 epoch 8 - iter 882/1476 - loss 0.01437888 - time (sec): 97.02 - samples/sec: 1026.18 - lr: 0.000008 - momentum: 0.000000
|
183 |
+
2023-09-04 16:25:39,764 epoch 8 - iter 1029/1476 - loss 0.01391930 - time (sec): 111.74 - samples/sec: 1023.92 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-09-04 16:25:56,352 epoch 8 - iter 1176/1476 - loss 0.01365890 - time (sec): 128.33 - samples/sec: 1026.47 - lr: 0.000007 - momentum: 0.000000
|
185 |
+
2023-09-04 16:26:12,375 epoch 8 - iter 1323/1476 - loss 0.01346635 - time (sec): 144.35 - samples/sec: 1028.51 - lr: 0.000007 - momentum: 0.000000
|
186 |
+
2023-09-04 16:26:28,802 epoch 8 - iter 1470/1476 - loss 0.01514444 - time (sec): 160.78 - samples/sec: 1031.04 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-09-04 16:26:29,417 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-09-04 16:26:29,417 EPOCH 8 done: loss 0.0151 - lr: 0.000007
|
189 |
+
2023-09-04 16:26:47,229 DEV : loss 0.21184813976287842 - f1-score (micro avg) 0.8326
|
190 |
+
2023-09-04 16:26:47,258 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-09-04 16:27:03,378 epoch 9 - iter 147/1476 - loss 0.00710163 - time (sec): 16.12 - samples/sec: 1048.44 - lr: 0.000006 - momentum: 0.000000
|
192 |
+
2023-09-04 16:27:19,755 epoch 9 - iter 294/1476 - loss 0.00801837 - time (sec): 32.50 - samples/sec: 1037.91 - lr: 0.000006 - momentum: 0.000000
|
193 |
+
2023-09-04 16:27:34,665 epoch 9 - iter 441/1476 - loss 0.00580640 - time (sec): 47.40 - samples/sec: 1026.45 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-09-04 16:27:49,985 epoch 9 - iter 588/1476 - loss 0.00837084 - time (sec): 62.73 - samples/sec: 1019.41 - lr: 0.000005 - momentum: 0.000000
|
195 |
+
2023-09-04 16:28:06,208 epoch 9 - iter 735/1476 - loss 0.01021569 - time (sec): 78.95 - samples/sec: 1012.55 - lr: 0.000005 - momentum: 0.000000
|
196 |
+
2023-09-04 16:28:23,064 epoch 9 - iter 882/1476 - loss 0.01022452 - time (sec): 95.80 - samples/sec: 1017.33 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-09-04 16:28:39,930 epoch 9 - iter 1029/1476 - loss 0.00955407 - time (sec): 112.67 - samples/sec: 1024.97 - lr: 0.000004 - momentum: 0.000000
|
198 |
+
2023-09-04 16:28:55,018 epoch 9 - iter 1176/1476 - loss 0.01011015 - time (sec): 127.76 - samples/sec: 1023.93 - lr: 0.000004 - momentum: 0.000000
|
199 |
+
2023-09-04 16:29:10,672 epoch 9 - iter 1323/1476 - loss 0.01074550 - time (sec): 143.41 - samples/sec: 1023.30 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-09-04 16:29:27,485 epoch 9 - iter 1470/1476 - loss 0.01108833 - time (sec): 160.23 - samples/sec: 1034.99 - lr: 0.000003 - momentum: 0.000000
|
201 |
+
2023-09-04 16:29:28,075 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-09-04 16:29:28,076 EPOCH 9 done: loss 0.0111 - lr: 0.000003
|
203 |
+
2023-09-04 16:29:45,841 DEV : loss 0.21952657401561737 - f1-score (micro avg) 0.831
|
204 |
+
2023-09-04 16:29:45,870 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-09-04 16:30:01,686 epoch 10 - iter 147/1476 - loss 0.00192668 - time (sec): 15.81 - samples/sec: 1026.31 - lr: 0.000003 - momentum: 0.000000
|
206 |
+
2023-09-04 16:30:17,496 epoch 10 - iter 294/1476 - loss 0.00589079 - time (sec): 31.62 - samples/sec: 1037.17 - lr: 0.000003 - momentum: 0.000000
|
207 |
+
2023-09-04 16:30:32,320 epoch 10 - iter 441/1476 - loss 0.00609051 - time (sec): 46.45 - samples/sec: 1027.66 - lr: 0.000002 - momentum: 0.000000
|
208 |
+
2023-09-04 16:30:49,236 epoch 10 - iter 588/1476 - loss 0.00804938 - time (sec): 63.36 - samples/sec: 1040.72 - lr: 0.000002 - momentum: 0.000000
|
209 |
+
2023-09-04 16:31:06,789 epoch 10 - iter 735/1476 - loss 0.00869197 - time (sec): 80.92 - samples/sec: 1043.44 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-09-04 16:31:22,199 epoch 10 - iter 882/1476 - loss 0.00811293 - time (sec): 96.33 - samples/sec: 1042.35 - lr: 0.000001 - momentum: 0.000000
|
211 |
+
2023-09-04 16:31:38,238 epoch 10 - iter 1029/1476 - loss 0.00720321 - time (sec): 112.37 - samples/sec: 1044.89 - lr: 0.000001 - momentum: 0.000000
|
212 |
+
2023-09-04 16:31:55,863 epoch 10 - iter 1176/1476 - loss 0.00680639 - time (sec): 129.99 - samples/sec: 1044.88 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-09-04 16:32:11,597 epoch 10 - iter 1323/1476 - loss 0.00675417 - time (sec): 145.73 - samples/sec: 1039.65 - lr: 0.000000 - momentum: 0.000000
|
214 |
+
2023-09-04 16:32:26,367 epoch 10 - iter 1470/1476 - loss 0.00641702 - time (sec): 160.50 - samples/sec: 1032.89 - lr: 0.000000 - momentum: 0.000000
|
215 |
+
2023-09-04 16:32:26,963 ----------------------------------------------------------------------------------------------------
|
216 |
+
2023-09-04 16:32:26,963 EPOCH 10 done: loss 0.0064 - lr: 0.000000
|
217 |
+
2023-09-04 16:32:44,868 DEV : loss 0.2171323001384735 - f1-score (micro avg) 0.8311
|
218 |
+
2023-09-04 16:32:45,400 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-09-04 16:32:45,401 Loading model from best epoch ...
|
220 |
+
2023-09-04 16:32:47,539 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
221 |
+
2023-09-04 16:33:02,401
|
222 |
+
Results:
|
223 |
+
- F-score (micro) 0.7883
|
224 |
+
- F-score (macro) 0.6744
|
225 |
+
- Accuracy 0.6716
|
226 |
+
|
227 |
+
By class:
|
228 |
+
precision recall f1-score support
|
229 |
+
|
230 |
+
loc 0.8560 0.8520 0.8540 858
|
231 |
+
pers 0.7569 0.8119 0.7835 537
|
232 |
+
org 0.5917 0.5379 0.5635 132
|
233 |
+
time 0.4167 0.5556 0.4762 54
|
234 |
+
prod 0.7193 0.6721 0.6949 61
|
235 |
+
|
236 |
+
micro avg 0.7796 0.7972 0.7883 1642
|
237 |
+
macro avg 0.6681 0.6859 0.6744 1642
|
238 |
+
weighted avg 0.7828 0.7972 0.7892 1642
|
239 |
+
|
240 |
+
2023-09-04 16:33:02,402 ----------------------------------------------------------------------------------------------------
|