Upload folder using huggingface_hub
Browse files- __pycache__/flair-fine-tuner.cpython-39.pyc +0 -0
- __pycache__/utils.cpython-39.pyc +0 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/best-model.pt +3 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/dev.tsv +0 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/final-model.pt +3 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/loss.tsv +11 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/test.tsv +0 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/training.log +245 -0
- training_params.json +8 -0
__pycache__/flair-fine-tuner.cpython-39.pyc
ADDED
Binary file (3.26 kB). View file
|
|
__pycache__/utils.cpython-39.pyc
ADDED
Binary file (4.6 kB). View file
|
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:350fcbfe586694a22d63197b8fee2bb1dc7dec651585844f9aaa00ce90c07e01
|
3 |
+
size 443334288
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c87a87bea36cb13135fa3b2cec4cdd677e488912562ef52061dd74342b25d186
|
3 |
+
size 443334491
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 09:24:17 0.0000 0.6392 0.1547 0.6683 0.6901 0.6791 0.5435
|
3 |
+
2 09:26:55 0.0000 0.1268 0.0999 0.7742 0.8288 0.8006 0.6881
|
4 |
+
3 09:29:32 0.0000 0.0718 0.1222 0.7759 0.7990 0.7872 0.6835
|
5 |
+
4 09:32:08 0.0000 0.0467 0.1691 0.7696 0.8190 0.7936 0.6938
|
6 |
+
5 09:34:46 0.0000 0.0343 0.1684 0.7871 0.8299 0.8079 0.7017
|
7 |
+
6 09:37:25 0.0000 0.0238 0.1733 0.8149 0.8345 0.8246 0.7260
|
8 |
+
7 09:40:05 0.0000 0.0185 0.1819 0.8184 0.8310 0.8247 0.7339
|
9 |
+
8 09:42:45 0.0000 0.0128 0.1916 0.8100 0.8425 0.8259 0.7333
|
10 |
+
9 09:45:24 0.0000 0.0105 0.1950 0.8136 0.8402 0.8267 0.7299
|
11 |
+
10 09:48:03 0.0000 0.0074 0.1974 0.8137 0.8408 0.8270 0.7329
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1/training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-09-04 09:21:49,223 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-09-04 09:21:49,224 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-09-04 09:21:49,224 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-09-04 09:21:49,224 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
53 |
+
2023-09-04 09:21:49,224 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-09-04 09:21:49,224 Train: 5901 sentences
|
55 |
+
2023-09-04 09:21:49,224 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-09-04 09:21:49,224 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-09-04 09:21:49,224 Training Params:
|
58 |
+
2023-09-04 09:21:49,224 - learning_rate: "3e-05"
|
59 |
+
2023-09-04 09:21:49,224 - mini_batch_size: "8"
|
60 |
+
2023-09-04 09:21:49,224 - max_epochs: "10"
|
61 |
+
2023-09-04 09:21:49,225 - shuffle: "True"
|
62 |
+
2023-09-04 09:21:49,225 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-09-04 09:21:49,225 Plugins:
|
64 |
+
2023-09-04 09:21:49,225 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-09-04 09:21:49,225 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-09-04 09:21:49,225 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-09-04 09:21:49,225 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-09-04 09:21:49,225 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-09-04 09:21:49,225 Computation:
|
70 |
+
2023-09-04 09:21:49,225 - compute on device: cuda:0
|
71 |
+
2023-09-04 09:21:49,225 - embedding storage: none
|
72 |
+
2023-09-04 09:21:49,225 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-09-04 09:21:49,225 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
74 |
+
2023-09-04 09:21:49,225 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-09-04 09:21:49,225 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-09-04 09:22:02,605 epoch 1 - iter 73/738 - loss 2.99077951 - time (sec): 13.38 - samples/sec: 1246.48 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-09-04 09:22:15,462 epoch 1 - iter 146/738 - loss 1.99727633 - time (sec): 26.24 - samples/sec: 1255.96 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-09-04 09:22:30,938 epoch 1 - iter 219/738 - loss 1.45706905 - time (sec): 41.71 - samples/sec: 1243.17 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-09-04 09:22:42,507 epoch 1 - iter 292/738 - loss 1.21016554 - time (sec): 53.28 - samples/sec: 1259.62 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-09-04 09:22:55,118 epoch 1 - iter 365/738 - loss 1.04663956 - time (sec): 65.89 - samples/sec: 1260.56 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-09-04 09:23:07,815 epoch 1 - iter 438/738 - loss 0.92994820 - time (sec): 78.59 - samples/sec: 1253.63 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-09-04 09:23:19,538 epoch 1 - iter 511/738 - loss 0.84238109 - time (sec): 90.31 - samples/sec: 1259.18 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-09-04 09:23:32,328 epoch 1 - iter 584/738 - loss 0.76960934 - time (sec): 103.10 - samples/sec: 1250.55 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-09-04 09:23:48,644 epoch 1 - iter 657/738 - loss 0.69414930 - time (sec): 119.42 - samples/sec: 1241.21 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-09-04 09:24:02,934 epoch 1 - iter 730/738 - loss 0.64412765 - time (sec): 133.71 - samples/sec: 1233.14 - lr: 0.000030 - momentum: 0.000000
|
86 |
+
2023-09-04 09:24:04,079 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-09-04 09:24:04,079 EPOCH 1 done: loss 0.6392 - lr: 0.000030
|
88 |
+
2023-09-04 09:24:17,932 DEV : loss 0.15471519529819489 - f1-score (micro avg) 0.6791
|
89 |
+
2023-09-04 09:24:17,960 saving best model
|
90 |
+
2023-09-04 09:24:18,493 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-09-04 09:24:32,866 epoch 2 - iter 73/738 - loss 0.16761812 - time (sec): 14.37 - samples/sec: 1177.44 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-09-04 09:24:44,419 epoch 2 - iter 146/738 - loss 0.15138292 - time (sec): 25.92 - samples/sec: 1199.23 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-09-04 09:24:58,295 epoch 2 - iter 219/738 - loss 0.14883077 - time (sec): 39.80 - samples/sec: 1166.13 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-09-04 09:25:12,114 epoch 2 - iter 292/738 - loss 0.14741815 - time (sec): 53.62 - samples/sec: 1168.67 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-09-04 09:25:23,984 epoch 2 - iter 365/738 - loss 0.14242339 - time (sec): 65.49 - samples/sec: 1190.67 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-09-04 09:25:42,603 epoch 2 - iter 438/738 - loss 0.14100333 - time (sec): 84.11 - samples/sec: 1186.26 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-09-04 09:25:56,405 epoch 2 - iter 511/738 - loss 0.13621877 - time (sec): 97.91 - samples/sec: 1185.38 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-09-04 09:26:10,572 epoch 2 - iter 584/738 - loss 0.13365880 - time (sec): 112.08 - samples/sec: 1181.94 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-09-04 09:26:24,017 epoch 2 - iter 657/738 - loss 0.13071969 - time (sec): 125.52 - samples/sec: 1187.22 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-09-04 09:26:36,319 epoch 2 - iter 730/738 - loss 0.12695473 - time (sec): 137.82 - samples/sec: 1195.22 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-09-04 09:26:37,592 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-09-04 09:26:37,593 EPOCH 2 done: loss 0.1268 - lr: 0.000027
|
103 |
+
2023-09-04 09:26:55,168 DEV : loss 0.09993426501750946 - f1-score (micro avg) 0.8006
|
104 |
+
2023-09-04 09:26:55,196 saving best model
|
105 |
+
2023-09-04 09:26:56,589 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-09-04 09:27:09,231 epoch 3 - iter 73/738 - loss 0.07219142 - time (sec): 12.64 - samples/sec: 1202.50 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-09-04 09:27:21,978 epoch 3 - iter 146/738 - loss 0.06633822 - time (sec): 25.39 - samples/sec: 1229.25 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-09-04 09:27:35,312 epoch 3 - iter 219/738 - loss 0.07341871 - time (sec): 38.72 - samples/sec: 1248.01 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-09-04 09:27:49,923 epoch 3 - iter 292/738 - loss 0.07149973 - time (sec): 53.33 - samples/sec: 1226.73 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-09-04 09:28:04,553 epoch 3 - iter 365/738 - loss 0.07590859 - time (sec): 67.96 - samples/sec: 1220.19 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-09-04 09:28:17,129 epoch 3 - iter 438/738 - loss 0.07660137 - time (sec): 80.54 - samples/sec: 1215.15 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-09-04 09:28:30,282 epoch 3 - iter 511/738 - loss 0.07462537 - time (sec): 93.69 - samples/sec: 1220.33 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-09-04 09:28:45,587 epoch 3 - iter 584/738 - loss 0.07483860 - time (sec): 109.00 - samples/sec: 1204.81 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-09-04 09:28:58,611 epoch 3 - iter 657/738 - loss 0.07372653 - time (sec): 122.02 - samples/sec: 1210.81 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-09-04 09:29:13,916 epoch 3 - iter 730/738 - loss 0.07209632 - time (sec): 137.33 - samples/sec: 1200.40 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-09-04 09:29:15,048 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-09-04 09:29:15,048 EPOCH 3 done: loss 0.0718 - lr: 0.000023
|
118 |
+
2023-09-04 09:29:32,616 DEV : loss 0.12221837788820267 - f1-score (micro avg) 0.7872
|
119 |
+
2023-09-04 09:29:32,643 ----------------------------------------------------------------------------------------------------
|
120 |
+
2023-09-04 09:29:45,534 epoch 4 - iter 73/738 - loss 0.04605034 - time (sec): 12.89 - samples/sec: 1222.35 - lr: 0.000023 - momentum: 0.000000
|
121 |
+
2023-09-04 09:30:00,070 epoch 4 - iter 146/738 - loss 0.04545629 - time (sec): 27.43 - samples/sec: 1218.80 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-09-04 09:30:15,983 epoch 4 - iter 219/738 - loss 0.04527061 - time (sec): 43.34 - samples/sec: 1201.40 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-09-04 09:30:28,926 epoch 4 - iter 292/738 - loss 0.04515660 - time (sec): 56.28 - samples/sec: 1197.89 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-09-04 09:30:41,794 epoch 4 - iter 365/738 - loss 0.04704352 - time (sec): 69.15 - samples/sec: 1199.68 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-09-04 09:30:53,662 epoch 4 - iter 438/738 - loss 0.04484810 - time (sec): 81.02 - samples/sec: 1203.52 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-09-04 09:31:08,362 epoch 4 - iter 511/738 - loss 0.04374676 - time (sec): 95.72 - samples/sec: 1202.56 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-09-04 09:31:21,314 epoch 4 - iter 584/738 - loss 0.04477741 - time (sec): 108.67 - samples/sec: 1200.04 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-09-04 09:31:36,680 epoch 4 - iter 657/738 - loss 0.04576821 - time (sec): 124.04 - samples/sec: 1195.67 - lr: 0.000020 - momentum: 0.000000
|
129 |
+
2023-09-04 09:31:49,911 epoch 4 - iter 730/738 - loss 0.04705550 - time (sec): 137.27 - samples/sec: 1201.61 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-09-04 09:31:51,055 ----------------------------------------------------------------------------------------------------
|
131 |
+
2023-09-04 09:31:51,055 EPOCH 4 done: loss 0.0467 - lr: 0.000020
|
132 |
+
2023-09-04 09:32:08,573 DEV : loss 0.16911198198795319 - f1-score (micro avg) 0.7936
|
133 |
+
2023-09-04 09:32:08,611 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-09-04 09:32:21,105 epoch 5 - iter 73/738 - loss 0.04520474 - time (sec): 12.49 - samples/sec: 1229.86 - lr: 0.000020 - momentum: 0.000000
|
135 |
+
2023-09-04 09:32:34,520 epoch 5 - iter 146/738 - loss 0.03466443 - time (sec): 25.91 - samples/sec: 1206.51 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-09-04 09:32:49,136 epoch 5 - iter 219/738 - loss 0.03752519 - time (sec): 40.52 - samples/sec: 1198.98 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-09-04 09:33:02,348 epoch 5 - iter 292/738 - loss 0.03479428 - time (sec): 53.74 - samples/sec: 1190.30 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-09-04 09:33:17,938 epoch 5 - iter 365/738 - loss 0.03283963 - time (sec): 69.33 - samples/sec: 1174.82 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-09-04 09:33:32,496 epoch 5 - iter 438/738 - loss 0.03344278 - time (sec): 83.88 - samples/sec: 1172.97 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-09-04 09:33:45,386 epoch 5 - iter 511/738 - loss 0.03258506 - time (sec): 96.77 - samples/sec: 1176.67 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-09-04 09:33:58,800 epoch 5 - iter 584/738 - loss 0.03255792 - time (sec): 110.19 - samples/sec: 1179.17 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-09-04 09:34:14,334 epoch 5 - iter 657/738 - loss 0.03302122 - time (sec): 125.72 - samples/sec: 1180.32 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-09-04 09:34:27,586 epoch 5 - iter 730/738 - loss 0.03398325 - time (sec): 138.97 - samples/sec: 1187.29 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-09-04 09:34:28,742 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-09-04 09:34:28,742 EPOCH 5 done: loss 0.0343 - lr: 0.000017
|
146 |
+
2023-09-04 09:34:46,304 DEV : loss 0.16836385428905487 - f1-score (micro avg) 0.8079
|
147 |
+
2023-09-04 09:34:46,331 saving best model
|
148 |
+
2023-09-04 09:34:47,694 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-09-04 09:35:00,156 epoch 6 - iter 73/738 - loss 0.03138358 - time (sec): 12.46 - samples/sec: 1198.91 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-09-04 09:35:12,874 epoch 6 - iter 146/738 - loss 0.02510301 - time (sec): 25.18 - samples/sec: 1204.86 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-09-04 09:35:29,204 epoch 6 - iter 219/738 - loss 0.02223835 - time (sec): 41.51 - samples/sec: 1184.25 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-09-04 09:35:43,343 epoch 6 - iter 292/738 - loss 0.02522528 - time (sec): 55.65 - samples/sec: 1169.31 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-09-04 09:35:56,430 epoch 6 - iter 365/738 - loss 0.02529903 - time (sec): 68.74 - samples/sec: 1178.35 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-09-04 09:36:11,738 epoch 6 - iter 438/738 - loss 0.02531622 - time (sec): 84.04 - samples/sec: 1178.44 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-09-04 09:36:24,220 epoch 6 - iter 511/738 - loss 0.02460370 - time (sec): 96.53 - samples/sec: 1182.78 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-09-04 09:36:37,585 epoch 6 - iter 584/738 - loss 0.02425742 - time (sec): 109.89 - samples/sec: 1184.28 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-09-04 09:36:53,465 epoch 6 - iter 657/738 - loss 0.02382671 - time (sec): 125.77 - samples/sec: 1185.39 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-09-04 09:37:06,667 epoch 6 - iter 730/738 - loss 0.02374947 - time (sec): 138.97 - samples/sec: 1186.10 - lr: 0.000013 - momentum: 0.000000
|
159 |
+
2023-09-04 09:37:07,907 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-09-04 09:37:07,907 EPOCH 6 done: loss 0.0238 - lr: 0.000013
|
161 |
+
2023-09-04 09:37:25,458 DEV : loss 0.17327718436717987 - f1-score (micro avg) 0.8246
|
162 |
+
2023-09-04 09:37:25,486 saving best model
|
163 |
+
2023-09-04 09:37:26,877 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-09-04 09:37:39,400 epoch 7 - iter 73/738 - loss 0.01797924 - time (sec): 12.52 - samples/sec: 1214.04 - lr: 0.000013 - momentum: 0.000000
|
165 |
+
2023-09-04 09:37:54,864 epoch 7 - iter 146/738 - loss 0.01908055 - time (sec): 27.99 - samples/sec: 1201.77 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-09-04 09:38:06,657 epoch 7 - iter 219/738 - loss 0.01920515 - time (sec): 39.78 - samples/sec: 1224.36 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-09-04 09:38:21,336 epoch 7 - iter 292/738 - loss 0.01810161 - time (sec): 54.46 - samples/sec: 1189.52 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-09-04 09:38:36,027 epoch 7 - iter 365/738 - loss 0.01787997 - time (sec): 69.15 - samples/sec: 1182.81 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-09-04 09:38:50,313 epoch 7 - iter 438/738 - loss 0.01966787 - time (sec): 83.43 - samples/sec: 1196.60 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-09-04 09:39:05,223 epoch 7 - iter 511/738 - loss 0.01946810 - time (sec): 98.34 - samples/sec: 1193.45 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-09-04 09:39:20,188 epoch 7 - iter 584/738 - loss 0.01863273 - time (sec): 113.31 - samples/sec: 1184.38 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-09-04 09:39:32,825 epoch 7 - iter 657/738 - loss 0.01833497 - time (sec): 125.95 - samples/sec: 1182.71 - lr: 0.000010 - momentum: 0.000000
|
173 |
+
2023-09-04 09:39:45,978 epoch 7 - iter 730/738 - loss 0.01845157 - time (sec): 139.10 - samples/sec: 1182.89 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-09-04 09:39:47,290 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-09-04 09:39:47,290 EPOCH 7 done: loss 0.0185 - lr: 0.000010
|
176 |
+
2023-09-04 09:40:05,104 DEV : loss 0.18193018436431885 - f1-score (micro avg) 0.8247
|
177 |
+
2023-09-04 09:40:05,132 saving best model
|
178 |
+
2023-09-04 09:40:06,536 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-09-04 09:40:19,868 epoch 8 - iter 73/738 - loss 0.01025211 - time (sec): 13.33 - samples/sec: 1212.36 - lr: 0.000010 - momentum: 0.000000
|
180 |
+
2023-09-04 09:40:32,913 epoch 8 - iter 146/738 - loss 0.01132886 - time (sec): 26.38 - samples/sec: 1210.70 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-09-04 09:40:47,183 epoch 8 - iter 219/738 - loss 0.01230033 - time (sec): 40.65 - samples/sec: 1220.66 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-09-04 09:41:01,224 epoch 8 - iter 292/738 - loss 0.01353311 - time (sec): 54.69 - samples/sec: 1195.37 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-09-04 09:41:14,252 epoch 8 - iter 365/738 - loss 0.01399786 - time (sec): 67.71 - samples/sec: 1196.02 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-09-04 09:41:28,819 epoch 8 - iter 438/738 - loss 0.01395506 - time (sec): 82.28 - samples/sec: 1181.80 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-09-04 09:41:41,664 epoch 8 - iter 511/738 - loss 0.01344088 - time (sec): 95.13 - samples/sec: 1183.18 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-09-04 09:41:57,831 epoch 8 - iter 584/738 - loss 0.01376270 - time (sec): 111.29 - samples/sec: 1176.44 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-09-04 09:42:10,940 epoch 8 - iter 657/738 - loss 0.01348014 - time (sec): 124.40 - samples/sec: 1180.41 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-09-04 09:42:26,173 epoch 8 - iter 730/738 - loss 0.01291407 - time (sec): 139.64 - samples/sec: 1180.80 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-09-04 09:42:27,393 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-09-04 09:42:27,393 EPOCH 8 done: loss 0.0128 - lr: 0.000007
|
191 |
+
2023-09-04 09:42:45,195 DEV : loss 0.19158028066158295 - f1-score (micro avg) 0.8259
|
192 |
+
2023-09-04 09:42:45,223 saving best model
|
193 |
+
2023-09-04 09:42:46,627 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-09-04 09:43:00,701 epoch 9 - iter 73/738 - loss 0.01103610 - time (sec): 14.07 - samples/sec: 1231.02 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-09-04 09:43:14,196 epoch 9 - iter 146/738 - loss 0.00967172 - time (sec): 27.57 - samples/sec: 1220.20 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-09-04 09:43:28,417 epoch 9 - iter 219/738 - loss 0.01210302 - time (sec): 41.79 - samples/sec: 1181.64 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-09-04 09:43:42,277 epoch 9 - iter 292/738 - loss 0.01072559 - time (sec): 55.65 - samples/sec: 1176.17 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-09-04 09:43:56,106 epoch 9 - iter 365/738 - loss 0.01006460 - time (sec): 69.48 - samples/sec: 1174.04 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-09-04 09:44:08,825 epoch 9 - iter 438/738 - loss 0.00985966 - time (sec): 82.20 - samples/sec: 1179.66 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-09-04 09:44:22,290 epoch 9 - iter 511/738 - loss 0.00970238 - time (sec): 95.66 - samples/sec: 1193.45 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-09-04 09:44:37,658 epoch 9 - iter 584/738 - loss 0.00995580 - time (sec): 111.03 - samples/sec: 1183.03 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-09-04 09:44:51,538 epoch 9 - iter 657/738 - loss 0.01056869 - time (sec): 124.91 - samples/sec: 1184.22 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-09-04 09:45:05,148 epoch 9 - iter 730/738 - loss 0.01067224 - time (sec): 138.52 - samples/sec: 1186.38 - lr: 0.000003 - momentum: 0.000000
|
204 |
+
2023-09-04 09:45:07,069 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-09-04 09:45:07,069 EPOCH 9 done: loss 0.0105 - lr: 0.000003
|
206 |
+
2023-09-04 09:45:24,919 DEV : loss 0.19501827657222748 - f1-score (micro avg) 0.8267
|
207 |
+
2023-09-04 09:45:24,946 saving best model
|
208 |
+
2023-09-04 09:45:26,336 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-09-04 09:45:39,933 epoch 10 - iter 73/738 - loss 0.01089305 - time (sec): 13.60 - samples/sec: 1185.75 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-09-04 09:45:56,561 epoch 10 - iter 146/738 - loss 0.00877497 - time (sec): 30.22 - samples/sec: 1171.91 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-09-04 09:46:10,757 epoch 10 - iter 219/738 - loss 0.00933966 - time (sec): 44.42 - samples/sec: 1157.10 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-09-04 09:46:22,786 epoch 10 - iter 292/738 - loss 0.00795691 - time (sec): 56.45 - samples/sec: 1183.37 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-09-04 09:46:34,767 epoch 10 - iter 365/738 - loss 0.00721217 - time (sec): 68.43 - samples/sec: 1201.70 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-09-04 09:46:47,125 epoch 10 - iter 438/738 - loss 0.00806769 - time (sec): 80.79 - samples/sec: 1205.64 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-09-04 09:47:01,780 epoch 10 - iter 511/738 - loss 0.00760834 - time (sec): 95.44 - samples/sec: 1203.76 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-09-04 09:47:15,578 epoch 10 - iter 584/738 - loss 0.00787828 - time (sec): 109.24 - samples/sec: 1199.16 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-09-04 09:47:29,252 epoch 10 - iter 657/738 - loss 0.00757345 - time (sec): 122.91 - samples/sec: 1195.68 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-09-04 09:47:44,880 epoch 10 - iter 730/738 - loss 0.00742896 - time (sec): 138.54 - samples/sec: 1190.99 - lr: 0.000000 - momentum: 0.000000
|
219 |
+
2023-09-04 09:47:45,959 ----------------------------------------------------------------------------------------------------
|
220 |
+
2023-09-04 09:47:45,960 EPOCH 10 done: loss 0.0074 - lr: 0.000000
|
221 |
+
2023-09-04 09:48:03,734 DEV : loss 0.19744744896888733 - f1-score (micro avg) 0.827
|
222 |
+
2023-09-04 09:48:03,762 saving best model
|
223 |
+
2023-09-04 09:48:06,486 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-09-04 09:48:06,487 Loading model from best epoch ...
|
225 |
+
2023-09-04 09:48:08,807 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
226 |
+
2023-09-04 09:48:23,545
|
227 |
+
Results:
|
228 |
+
- F-score (micro) 0.8056
|
229 |
+
- F-score (macro) 0.6959
|
230 |
+
- Accuracy 0.6957
|
231 |
+
|
232 |
+
By class:
|
233 |
+
precision recall f1-score support
|
234 |
+
|
235 |
+
loc 0.8705 0.8776 0.8741 858
|
236 |
+
pers 0.7589 0.8324 0.7940 537
|
237 |
+
org 0.5725 0.5985 0.5852 132
|
238 |
+
time 0.5000 0.5926 0.5424 54
|
239 |
+
prod 0.7143 0.6557 0.6838 61
|
240 |
+
|
241 |
+
micro avg 0.7891 0.8228 0.8056 1642
|
242 |
+
macro avg 0.6832 0.7114 0.6959 1642
|
243 |
+
weighted avg 0.7921 0.8228 0.8067 1642
|
244 |
+
|
245 |
+
2023-09-04 09:48:23,545 ----------------------------------------------------------------------------------------------------
|
training_params.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"username": "stefan-it",
|
3 |
+
"project_name": "/tmp/model",
|
4 |
+
"data_path": "stefan-it/autotrain-flair-hipe2022-fr-hmbert",
|
5 |
+
"token": "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",
|
6 |
+
"script_path": "/home/stefan/Repositories/hmTEAMS/bench",
|
7 |
+
"env": {}
|
8 |
+
}
|