Upload folder using huggingface_hub
Browse files- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/best-model.pt +3 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/dev.tsv +0 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/final-model.pt +3 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/loss.tsv +11 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/test.tsv +0 -0
- hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/training.log +243 -0
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f875fce663dc0ca71a304539d4b77e944618d9db478a10a34232c2d3fa216806
|
3 |
+
size 443334288
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5adeb13968058291a58cd347ac1c129e537f5b1e6aae2d564192d02dca5cc93f
|
3 |
+
size 443334491
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 12:13:20 0.0000 0.5658 0.1398 0.6653 0.7365 0.6991 0.5728
|
3 |
+
2 12:16:19 0.0000 0.1310 0.1189 0.7513 0.8184 0.7834 0.6703
|
4 |
+
3 12:19:18 0.0000 0.0828 0.1391 0.8122 0.7904 0.8012 0.6928
|
5 |
+
4 12:22:17 0.0000 0.0569 0.1755 0.7952 0.8431 0.8185 0.7146
|
6 |
+
5 12:25:17 0.0000 0.0397 0.1827 0.8017 0.8173 0.8094 0.7096
|
7 |
+
6 12:28:16 0.0000 0.0274 0.1943 0.7741 0.8419 0.8066 0.7023
|
8 |
+
7 12:31:14 0.0000 0.0209 0.2070 0.8160 0.8202 0.8181 0.7167
|
9 |
+
8 12:34:12 0.0000 0.0173 0.1981 0.8051 0.8425 0.8234 0.7246
|
10 |
+
9 12:37:13 0.0000 0.0100 0.2161 0.8304 0.8328 0.8316 0.7329
|
11 |
+
10 12:40:15 0.0000 0.0070 0.2240 0.8173 0.8379 0.8275 0.7300
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2/training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-09-04 12:10:26,605 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-09-04 12:10:26,606 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-09-04 12:10:26,606 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-09-04 12:10:26,606 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
53 |
+
2023-09-04 12:10:26,606 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-09-04 12:10:26,606 Train: 5901 sentences
|
55 |
+
2023-09-04 12:10:26,606 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-09-04 12:10:26,606 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-09-04 12:10:26,606 Training Params:
|
58 |
+
2023-09-04 12:10:26,606 - learning_rate: "3e-05"
|
59 |
+
2023-09-04 12:10:26,606 - mini_batch_size: "4"
|
60 |
+
2023-09-04 12:10:26,607 - max_epochs: "10"
|
61 |
+
2023-09-04 12:10:26,607 - shuffle: "True"
|
62 |
+
2023-09-04 12:10:26,607 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-09-04 12:10:26,607 Plugins:
|
64 |
+
2023-09-04 12:10:26,607 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-09-04 12:10:26,607 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-09-04 12:10:26,607 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-09-04 12:10:26,607 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-09-04 12:10:26,607 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-09-04 12:10:26,607 Computation:
|
70 |
+
2023-09-04 12:10:26,607 - compute on device: cuda:0
|
71 |
+
2023-09-04 12:10:26,607 - embedding storage: none
|
72 |
+
2023-09-04 12:10:26,607 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-09-04 12:10:26,607 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
|
74 |
+
2023-09-04 12:10:26,607 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-09-04 12:10:26,607 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-09-04 12:10:43,161 epoch 1 - iter 147/1476 - loss 2.73210553 - time (sec): 16.55 - samples/sec: 1069.98 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-09-04 12:10:59,843 epoch 1 - iter 294/1476 - loss 1.67128939 - time (sec): 33.23 - samples/sec: 1081.29 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-09-04 12:11:15,620 epoch 1 - iter 441/1476 - loss 1.27494730 - time (sec): 49.01 - samples/sec: 1060.62 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-09-04 12:11:31,691 epoch 1 - iter 588/1476 - loss 1.03907660 - time (sec): 65.08 - samples/sec: 1055.96 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-09-04 12:11:47,984 epoch 1 - iter 735/1476 - loss 0.89724396 - time (sec): 81.38 - samples/sec: 1051.72 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-09-04 12:12:03,754 epoch 1 - iter 882/1476 - loss 0.79290439 - time (sec): 97.15 - samples/sec: 1052.97 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-09-04 12:12:19,631 epoch 1 - iter 1029/1476 - loss 0.71392745 - time (sec): 113.02 - samples/sec: 1049.34 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-09-04 12:12:34,680 epoch 1 - iter 1176/1476 - loss 0.65858203 - time (sec): 128.07 - samples/sec: 1041.23 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-09-04 12:12:50,407 epoch 1 - iter 1323/1476 - loss 0.60824912 - time (sec): 143.80 - samples/sec: 1040.82 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-09-04 12:13:05,993 epoch 1 - iter 1470/1476 - loss 0.56700946 - time (sec): 159.38 - samples/sec: 1040.65 - lr: 0.000030 - momentum: 0.000000
|
86 |
+
2023-09-04 12:13:06,527 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-09-04 12:13:06,527 EPOCH 1 done: loss 0.5658 - lr: 0.000030
|
88 |
+
2023-09-04 12:13:20,766 DEV : loss 0.1397937834262848 - f1-score (micro avg) 0.6991
|
89 |
+
2023-09-04 12:13:20,795 saving best model
|
90 |
+
2023-09-04 12:13:21,266 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-09-04 12:13:35,988 epoch 2 - iter 147/1476 - loss 0.12585947 - time (sec): 14.72 - samples/sec: 1034.12 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-09-04 12:13:51,523 epoch 2 - iter 294/1476 - loss 0.13634053 - time (sec): 30.26 - samples/sec: 1038.61 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-09-04 12:14:07,067 epoch 2 - iter 441/1476 - loss 0.13629332 - time (sec): 45.80 - samples/sec: 1043.07 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-09-04 12:14:22,956 epoch 2 - iter 588/1476 - loss 0.13335551 - time (sec): 61.69 - samples/sec: 1033.64 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-09-04 12:14:38,328 epoch 2 - iter 735/1476 - loss 0.13773118 - time (sec): 77.06 - samples/sec: 1025.00 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-09-04 12:14:54,713 epoch 2 - iter 882/1476 - loss 0.13680546 - time (sec): 93.45 - samples/sec: 1028.06 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-09-04 12:15:11,883 epoch 2 - iter 1029/1476 - loss 0.13310658 - time (sec): 110.62 - samples/sec: 1034.77 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-09-04 12:15:27,632 epoch 2 - iter 1176/1476 - loss 0.12878942 - time (sec): 126.36 - samples/sec: 1036.13 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-09-04 12:15:43,931 epoch 2 - iter 1323/1476 - loss 0.13086266 - time (sec): 142.66 - samples/sec: 1037.71 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-09-04 12:16:00,798 epoch 2 - iter 1470/1476 - loss 0.13097485 - time (sec): 159.53 - samples/sec: 1038.10 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-09-04 12:16:01,459 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-09-04 12:16:01,459 EPOCH 2 done: loss 0.1310 - lr: 0.000027
|
103 |
+
2023-09-04 12:16:19,224 DEV : loss 0.11885535717010498 - f1-score (micro avg) 0.7834
|
104 |
+
2023-09-04 12:16:19,254 saving best model
|
105 |
+
2023-09-04 12:16:20,601 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-09-04 12:16:36,100 epoch 3 - iter 147/1476 - loss 0.06204677 - time (sec): 15.50 - samples/sec: 1001.27 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-09-04 12:16:51,968 epoch 3 - iter 294/1476 - loss 0.07796621 - time (sec): 31.37 - samples/sec: 1031.45 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-09-04 12:17:07,754 epoch 3 - iter 441/1476 - loss 0.07999886 - time (sec): 47.15 - samples/sec: 1031.13 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-09-04 12:17:22,838 epoch 3 - iter 588/1476 - loss 0.08270452 - time (sec): 62.24 - samples/sec: 1030.22 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-09-04 12:17:39,545 epoch 3 - iter 735/1476 - loss 0.08305027 - time (sec): 78.94 - samples/sec: 1033.22 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-09-04 12:17:56,400 epoch 3 - iter 882/1476 - loss 0.08112755 - time (sec): 95.80 - samples/sec: 1044.57 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-09-04 12:18:12,029 epoch 3 - iter 1029/1476 - loss 0.07913826 - time (sec): 111.43 - samples/sec: 1042.16 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-09-04 12:18:28,585 epoch 3 - iter 1176/1476 - loss 0.08164670 - time (sec): 127.98 - samples/sec: 1046.96 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-09-04 12:18:44,212 epoch 3 - iter 1323/1476 - loss 0.08079377 - time (sec): 143.61 - samples/sec: 1046.25 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-09-04 12:18:59,661 epoch 3 - iter 1470/1476 - loss 0.08273508 - time (sec): 159.06 - samples/sec: 1042.50 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-09-04 12:19:00,226 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-09-04 12:19:00,226 EPOCH 3 done: loss 0.0828 - lr: 0.000023
|
118 |
+
2023-09-04 12:19:18,028 DEV : loss 0.13910789787769318 - f1-score (micro avg) 0.8012
|
119 |
+
2023-09-04 12:19:18,056 saving best model
|
120 |
+
2023-09-04 12:19:19,397 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-09-04 12:19:34,809 epoch 4 - iter 147/1476 - loss 0.04738534 - time (sec): 15.41 - samples/sec: 988.79 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-09-04 12:19:50,202 epoch 4 - iter 294/1476 - loss 0.04829203 - time (sec): 30.80 - samples/sec: 1009.68 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-09-04 12:20:06,249 epoch 4 - iter 441/1476 - loss 0.05048346 - time (sec): 46.85 - samples/sec: 1020.57 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-09-04 12:20:21,504 epoch 4 - iter 588/1476 - loss 0.05401829 - time (sec): 62.11 - samples/sec: 1018.02 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-09-04 12:20:37,695 epoch 4 - iter 735/1476 - loss 0.05389081 - time (sec): 78.30 - samples/sec: 1020.65 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-09-04 12:20:54,439 epoch 4 - iter 882/1476 - loss 0.05215908 - time (sec): 95.04 - samples/sec: 1024.97 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-09-04 12:21:11,831 epoch 4 - iter 1029/1476 - loss 0.05188376 - time (sec): 112.43 - samples/sec: 1034.98 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-09-04 12:21:27,996 epoch 4 - iter 1176/1476 - loss 0.05177284 - time (sec): 128.60 - samples/sec: 1033.94 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-09-04 12:21:44,334 epoch 4 - iter 1323/1476 - loss 0.05555991 - time (sec): 144.94 - samples/sec: 1033.07 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-09-04 12:21:59,639 epoch 4 - iter 1470/1476 - loss 0.05670977 - time (sec): 160.24 - samples/sec: 1034.23 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-09-04 12:22:00,312 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-09-04 12:22:00,312 EPOCH 4 done: loss 0.0569 - lr: 0.000020
|
133 |
+
2023-09-04 12:22:17,969 DEV : loss 0.1755443960428238 - f1-score (micro avg) 0.8185
|
134 |
+
2023-09-04 12:22:17,998 saving best model
|
135 |
+
2023-09-04 12:22:19,334 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-09-04 12:22:35,334 epoch 5 - iter 147/1476 - loss 0.04990612 - time (sec): 16.00 - samples/sec: 1034.91 - lr: 0.000020 - momentum: 0.000000
|
137 |
+
2023-09-04 12:22:51,352 epoch 5 - iter 294/1476 - loss 0.04266641 - time (sec): 32.02 - samples/sec: 1039.65 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-09-04 12:23:07,633 epoch 5 - iter 441/1476 - loss 0.04264386 - time (sec): 48.30 - samples/sec: 1042.34 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-09-04 12:23:23,170 epoch 5 - iter 588/1476 - loss 0.04265371 - time (sec): 63.83 - samples/sec: 1040.25 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-09-04 12:23:38,900 epoch 5 - iter 735/1476 - loss 0.04386486 - time (sec): 79.56 - samples/sec: 1037.46 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-09-04 12:23:54,335 epoch 5 - iter 882/1476 - loss 0.04172884 - time (sec): 95.00 - samples/sec: 1032.30 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-09-04 12:24:10,304 epoch 5 - iter 1029/1476 - loss 0.04002915 - time (sec): 110.97 - samples/sec: 1030.88 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-09-04 12:24:27,674 epoch 5 - iter 1176/1476 - loss 0.04050197 - time (sec): 128.34 - samples/sec: 1035.06 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-09-04 12:24:44,341 epoch 5 - iter 1323/1476 - loss 0.03922365 - time (sec): 145.01 - samples/sec: 1039.37 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-09-04 12:24:59,438 epoch 5 - iter 1470/1476 - loss 0.03983868 - time (sec): 160.10 - samples/sec: 1035.92 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-09-04 12:25:00,020 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-09-04 12:25:00,020 EPOCH 5 done: loss 0.0397 - lr: 0.000017
|
148 |
+
2023-09-04 12:25:17,700 DEV : loss 0.1826694905757904 - f1-score (micro avg) 0.8094
|
149 |
+
2023-09-04 12:25:17,729 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-09-04 12:25:32,823 epoch 6 - iter 147/1476 - loss 0.03369327 - time (sec): 15.09 - samples/sec: 989.08 - lr: 0.000016 - momentum: 0.000000
|
151 |
+
2023-09-04 12:25:50,310 epoch 6 - iter 294/1476 - loss 0.02937400 - time (sec): 32.58 - samples/sec: 1047.82 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-09-04 12:26:06,465 epoch 6 - iter 441/1476 - loss 0.02926561 - time (sec): 48.74 - samples/sec: 1047.66 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-09-04 12:26:22,535 epoch 6 - iter 588/1476 - loss 0.02924922 - time (sec): 64.81 - samples/sec: 1040.36 - lr: 0.000015 - momentum: 0.000000
|
154 |
+
2023-09-04 12:26:39,050 epoch 6 - iter 735/1476 - loss 0.02908336 - time (sec): 81.32 - samples/sec: 1044.38 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-09-04 12:26:55,665 epoch 6 - iter 882/1476 - loss 0.02948574 - time (sec): 97.94 - samples/sec: 1043.27 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-09-04 12:27:10,472 epoch 6 - iter 1029/1476 - loss 0.02810481 - time (sec): 112.74 - samples/sec: 1041.26 - lr: 0.000014 - momentum: 0.000000
|
157 |
+
2023-09-04 12:27:26,343 epoch 6 - iter 1176/1476 - loss 0.02607506 - time (sec): 128.61 - samples/sec: 1041.52 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-09-04 12:27:41,942 epoch 6 - iter 1323/1476 - loss 0.02644226 - time (sec): 144.21 - samples/sec: 1038.75 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-09-04 12:27:57,884 epoch 6 - iter 1470/1476 - loss 0.02747315 - time (sec): 160.15 - samples/sec: 1036.31 - lr: 0.000013 - momentum: 0.000000
|
160 |
+
2023-09-04 12:27:58,407 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-09-04 12:27:58,408 EPOCH 6 done: loss 0.0274 - lr: 0.000013
|
162 |
+
2023-09-04 12:28:16,034 DEV : loss 0.19426430761814117 - f1-score (micro avg) 0.8066
|
163 |
+
2023-09-04 12:28:16,070 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-09-04 12:28:33,027 epoch 7 - iter 147/1476 - loss 0.02184037 - time (sec): 16.96 - samples/sec: 1008.97 - lr: 0.000013 - momentum: 0.000000
|
165 |
+
2023-09-04 12:28:47,857 epoch 7 - iter 294/1476 - loss 0.01928947 - time (sec): 31.79 - samples/sec: 1011.09 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-09-04 12:29:04,927 epoch 7 - iter 441/1476 - loss 0.01813981 - time (sec): 48.86 - samples/sec: 1034.77 - lr: 0.000012 - momentum: 0.000000
|
167 |
+
2023-09-04 12:29:22,279 epoch 7 - iter 588/1476 - loss 0.01750973 - time (sec): 66.21 - samples/sec: 1047.02 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-09-04 12:29:37,447 epoch 7 - iter 735/1476 - loss 0.01906498 - time (sec): 81.38 - samples/sec: 1037.15 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-09-04 12:29:52,572 epoch 7 - iter 882/1476 - loss 0.01833867 - time (sec): 96.50 - samples/sec: 1033.81 - lr: 0.000011 - momentum: 0.000000
|
170 |
+
2023-09-04 12:30:07,790 epoch 7 - iter 1029/1476 - loss 0.01953989 - time (sec): 111.72 - samples/sec: 1037.08 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-09-04 12:30:23,159 epoch 7 - iter 1176/1476 - loss 0.02082342 - time (sec): 127.09 - samples/sec: 1035.03 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-09-04 12:30:38,922 epoch 7 - iter 1323/1476 - loss 0.02014967 - time (sec): 142.85 - samples/sec: 1033.23 - lr: 0.000010 - momentum: 0.000000
|
173 |
+
2023-09-04 12:30:56,155 epoch 7 - iter 1470/1476 - loss 0.02095818 - time (sec): 160.08 - samples/sec: 1036.30 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-09-04 12:30:56,696 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-09-04 12:30:56,696 EPOCH 7 done: loss 0.0209 - lr: 0.000010
|
176 |
+
2023-09-04 12:31:14,641 DEV : loss 0.20697009563446045 - f1-score (micro avg) 0.8181
|
177 |
+
2023-09-04 12:31:14,671 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-09-04 12:31:30,467 epoch 8 - iter 147/1476 - loss 0.02008496 - time (sec): 15.79 - samples/sec: 1063.45 - lr: 0.000010 - momentum: 0.000000
|
179 |
+
2023-09-04 12:31:47,018 epoch 8 - iter 294/1476 - loss 0.01871448 - time (sec): 32.35 - samples/sec: 1043.87 - lr: 0.000009 - momentum: 0.000000
|
180 |
+
2023-09-04 12:32:04,749 epoch 8 - iter 441/1476 - loss 0.02232604 - time (sec): 50.08 - samples/sec: 1061.88 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-09-04 12:32:19,968 epoch 8 - iter 588/1476 - loss 0.02350058 - time (sec): 65.30 - samples/sec: 1041.33 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-09-04 12:32:35,689 epoch 8 - iter 735/1476 - loss 0.02124328 - time (sec): 81.02 - samples/sec: 1034.13 - lr: 0.000008 - momentum: 0.000000
|
183 |
+
2023-09-04 12:32:50,743 epoch 8 - iter 882/1476 - loss 0.02070320 - time (sec): 96.07 - samples/sec: 1032.53 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-09-04 12:33:06,653 epoch 8 - iter 1029/1476 - loss 0.01859722 - time (sec): 111.98 - samples/sec: 1028.60 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-09-04 12:33:21,480 epoch 8 - iter 1176/1476 - loss 0.01802054 - time (sec): 126.81 - samples/sec: 1027.72 - lr: 0.000007 - momentum: 0.000000
|
186 |
+
2023-09-04 12:33:38,044 epoch 8 - iter 1323/1476 - loss 0.01771451 - time (sec): 143.37 - samples/sec: 1032.78 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-09-04 12:33:54,419 epoch 8 - iter 1470/1476 - loss 0.01726761 - time (sec): 159.75 - samples/sec: 1037.79 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-09-04 12:33:55,015 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-09-04 12:33:55,016 EPOCH 8 done: loss 0.0173 - lr: 0.000007
|
190 |
+
2023-09-04 12:34:12,904 DEV : loss 0.19811831414699554 - f1-score (micro avg) 0.8234
|
191 |
+
2023-09-04 12:34:12,933 saving best model
|
192 |
+
2023-09-04 12:34:14,315 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-09-04 12:34:30,008 epoch 9 - iter 147/1476 - loss 0.01313589 - time (sec): 15.69 - samples/sec: 992.22 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-09-04 12:34:46,798 epoch 9 - iter 294/1476 - loss 0.00980602 - time (sec): 32.48 - samples/sec: 1014.79 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-09-04 12:35:01,711 epoch 9 - iter 441/1476 - loss 0.00813046 - time (sec): 47.39 - samples/sec: 1024.95 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-09-04 12:35:17,496 epoch 9 - iter 588/1476 - loss 0.00810265 - time (sec): 63.18 - samples/sec: 1032.87 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-09-04 12:35:35,018 epoch 9 - iter 735/1476 - loss 0.00874325 - time (sec): 80.70 - samples/sec: 1032.76 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-09-04 12:35:50,521 epoch 9 - iter 882/1476 - loss 0.00780631 - time (sec): 96.20 - samples/sec: 1028.83 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-09-04 12:36:06,994 epoch 9 - iter 1029/1476 - loss 0.00794049 - time (sec): 112.68 - samples/sec: 1030.11 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-09-04 12:36:22,645 epoch 9 - iter 1176/1476 - loss 0.00837359 - time (sec): 128.33 - samples/sec: 1025.73 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-09-04 12:36:38,140 epoch 9 - iter 1323/1476 - loss 0.00873700 - time (sec): 143.82 - samples/sec: 1029.57 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-09-04 12:36:55,034 epoch 9 - iter 1470/1476 - loss 0.00966166 - time (sec): 160.72 - samples/sec: 1030.15 - lr: 0.000003 - momentum: 0.000000
|
203 |
+
2023-09-04 12:36:55,729 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-09-04 12:36:55,729 EPOCH 9 done: loss 0.0100 - lr: 0.000003
|
205 |
+
2023-09-04 12:37:13,594 DEV : loss 0.21610967814922333 - f1-score (micro avg) 0.8316
|
206 |
+
2023-09-04 12:37:13,628 saving best model
|
207 |
+
2023-09-04 12:37:15,830 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-09-04 12:37:32,731 epoch 10 - iter 147/1476 - loss 0.01124360 - time (sec): 16.90 - samples/sec: 1049.82 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-09-04 12:37:48,228 epoch 10 - iter 294/1476 - loss 0.00846166 - time (sec): 32.40 - samples/sec: 1039.80 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-09-04 12:38:03,099 epoch 10 - iter 441/1476 - loss 0.00738758 - time (sec): 47.27 - samples/sec: 1041.90 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-09-04 12:38:19,174 epoch 10 - iter 588/1476 - loss 0.00716507 - time (sec): 63.34 - samples/sec: 1038.33 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-09-04 12:38:35,118 epoch 10 - iter 735/1476 - loss 0.00703400 - time (sec): 79.29 - samples/sec: 1032.10 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-09-04 12:38:52,583 epoch 10 - iter 882/1476 - loss 0.00810549 - time (sec): 96.75 - samples/sec: 1040.79 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-09-04 12:39:07,706 epoch 10 - iter 1029/1476 - loss 0.00746135 - time (sec): 111.87 - samples/sec: 1032.00 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-09-04 12:39:24,342 epoch 10 - iter 1176/1476 - loss 0.00751286 - time (sec): 128.51 - samples/sec: 1030.97 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-09-04 12:39:40,699 epoch 10 - iter 1323/1476 - loss 0.00775825 - time (sec): 144.87 - samples/sec: 1031.56 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-09-04 12:39:56,750 epoch 10 - iter 1470/1476 - loss 0.00705547 - time (sec): 160.92 - samples/sec: 1030.82 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-09-04 12:39:57,343 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-09-04 12:39:57,343 EPOCH 10 done: loss 0.0070 - lr: 0.000000
|
220 |
+
2023-09-04 12:40:15,130 DEV : loss 0.22397613525390625 - f1-score (micro avg) 0.8275
|
221 |
+
2023-09-04 12:40:15,633 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-09-04 12:40:15,635 Loading model from best epoch ...
|
223 |
+
2023-09-04 12:40:17,463 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
224 |
+
2023-09-04 12:40:32,158
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.8052
|
227 |
+
- F-score (macro) 0.7066
|
228 |
+
- Accuracy 0.6966
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
loc 0.8786 0.8776 0.8781 858
|
234 |
+
pers 0.7470 0.8082 0.7764 537
|
235 |
+
org 0.6061 0.6061 0.6061 132
|
236 |
+
time 0.5303 0.6481 0.5833 54
|
237 |
+
prod 0.7069 0.6721 0.6891 61
|
238 |
+
|
239 |
+
micro avg 0.7928 0.8179 0.8052 1642
|
240 |
+
macro avg 0.6938 0.7224 0.7066 1642
|
241 |
+
weighted avg 0.7958 0.8179 0.8063 1642
|
242 |
+
|
243 |
+
2023-09-04 12:40:32,158 ----------------------------------------------------------------------------------------------------
|