staghado's picture
Upload folder using huggingface_hub
c633a0a verified
raw
history blame
18.5 kB
[
{
"id": 0,
"page": 11,
"bounding_box": [
312.14712142944336,
53.33697509765625,
564.7523803710938,
120.38897705078125
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\nLearner & 1 &2 &3 & 4\\\\\n\\hline\nClassification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\\\\nFunction (S1) & Logistic & Voted Perceptron &J48 & Always $0$\\\\\n\\hline\n Error & 47, & 53, & 47, & 47, \\\\\npercentage (S1) & 3 & 4 & 47 & 47\\\\\n\\hline\n Classification & Naive Bayes, &Always $1$, & RBF Network, & Random Tree, \\\\\nFunction (S2) & Random & Random & J48 & Always $0$ \\\\\n\\hline\n Error & 47, & 53, & 47, & 47, \\\\ \npercentage (S2) & 50 & 50 & 47 & 47 \\\\\n\\hline\n\\end{tabular}\n}\n\\add{\\vspace{-0.1in}}\n\\caption{Base classification functions used by the learners and their error percentages on the test data.}\n\\vspace{-0.25in}\n\\label{tab:sim_setup}\n\\end{table}",
"extracted_content": [
[
"Learner",
"1",
"2",
"3",
"4"
],
[
"Classification\nFunction (S1)",
"Naive Bayes,\nLogistic",
"Always 1,\nVoted Perceptron",
"RBF Network,\nJ48",
"Random Tree,\nAlways 0"
],
[
"Error\npercentage (S1)",
"47,\n3",
"53,\n4",
"47,\n47",
"47,\n47"
],
[
"Classification\nFunction (S2)",
"Naive Bayes,\nRandom",
"Always 1,\nRandom",
"RBF Network,\nJ48",
"Random Tree,\nAlways 0"
],
[
"Error\npercentage (S2)",
"47,\n50",
"53,\n50",
"47,\n47",
"47,\n47"
]
],
"similarity_score": 0.4544319600499376,
"table_image": "images/1308.4565v2/table_0.png",
"page_image": "pages/1308.4565v2/page_11.png"
},
{
"id": 1,
"page": 11,
"bounding_box": [
312.14712142944336,
152.52099609375,
564.7523803710938,
199.4580078125
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|c|c|c|c|}\n\\hline\n & $D_1(t)$ & $D_2(t)$ & $D_3(t)$ & $m_T$ & $A$ & $p$ \\\\\n\\hline\n(Z1) CoS & $t^{1/8} \\log t$ & $2 t^{1/8} \\log t$ & $t^{1/8} \\log t$ & $\\lceil T \\rceil^{1/4}$ & & \\\\\n\\hline\n(Z1) DCZA & $t^{1/8} \\log t$ & $2 t^{1/8} \\log t$ & $t^{1/8} \\log t$ & & $1$ & $4$ \\\\\n\\hline\n(Z2) CoS & $t^{1/2} \\log t$ & $2 t^{1/2} \\log t$ & $t^{1/2} \\log t$ & $\\lceil T \\rceil^{1/4}$ & & \\\\\n\\hline\n(Z2) DCZA & $t^{2/p} \\log t$ & $2 t^{2/p} \\log t$ & $t^{2/p} \\log t$ & & $1$ & $(3+\\sqrt{17})/2$ \\\\\n\\hline\n\\end{tabular}\n}\n\\add{\\vspace{-0.05in}}\n\\caption{Input parameters for CoS and DCZA for two different parameter sets Z1 and Z2.}\n\\label{tab:par_setup}\n\\add{\\vspace{-0.4in}}\n\\end{table}",
"extracted_content": [
[
"",
"D1(t)",
"D2(t)",
"D3(t)",
"mT",
"A",
"p"
],
[
"(Z1) CoS",
"t1/8 log t",
"2t1/8 log t",
"t1/8 log t",
"\u2308T\u23091/4",
"",
""
],
[
"(Z1) DCZA",
"t1/8 log t",
"2t1/8 log t",
"t1/8 log t",
"",
"1",
"4"
],
[
"(Z2) CoS",
"t1/2 log t",
"2t1/2 log t",
"t1/2 log t",
"\u2308T\u23091/4",
"",
""
],
[
"(Z2) DCZA",
"t2/p log t",
"2t2/p log t",
"t2/p log t",
"",
"1",
"\u221a\n(3 + 17)/2"
]
],
"similarity_score": 0.52,
"table_image": "images/1308.4565v2/table_1.png",
"page_image": "pages/1308.4565v2/page_11.png"
},
{
"id": 2,
"page": 12,
"bounding_box": [
56.45712375640869,
53.33697509765625,
286.24386978149414,
107.27099609375
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|}\n\\hline\n(Parameters) Algorithm & (S1) Error $\\%$ & (S2) Error $\\%$ \\\\\n\\hline\n(Z1) CoS (previous label as context) & 0.7 & 0.9 \\\\\n\\hline\n(Z1) DCZA (previous label as context) & 1.4 & 1.9 \\\\\n\\hline\nAdaBoost & 4.8 & 53 \\\\\n\\hline\n($w=100$) SWA & 2.4 & 2.7 \\\\\n\\hline\n($w=1000$) SWA & 11 & 11 \\\\\n\\hline\n(Z1) CoS (no-context) & 5.2 & 49.8 \\\\\n\\hline \n\\end{tabular}\n}\n\\add{\\vspace{-0.05in}}\n\\caption{Comparison of error percentages of CoS, DCZA, AdaBoost, SWA and CoS with no context.}\n\\label{tab:error_comp}\n\\vspace{-0.2in}\n%\\vspace{-0.4in}\n\\end{table}",
"extracted_content": [
[
"(Parameters) Algorithm",
"(S1) Error %",
"(S2) Error %"
],
[
"(Z1) CoS (previous label as context)",
"0.7",
"0.9"
],
[
"(Z1) DCZA (previous label as context)",
"1.4",
"1.9"
],
[
"AdaBoost",
"4.8",
"53"
],
[
"(w = 100) SWA",
"2.4",
"2.7"
],
[
"(w = 1000) SWA",
"11",
"11"
],
[
"(Z1) CoS (no-context)",
"5.2",
"49.8"
]
],
"similarity_score": 0.7660311958405546,
"table_image": "images/1308.4565v2/table_2.png",
"page_image": "pages/1308.4565v2/page_12.png"
},
{
"id": 3,
"page": 12,
"bounding_box": [
49.136778089735245,
146.8626708984375,
302.0871107313368,
208.0789794921875
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|c|}\n\\hline\n(Setting) & Error $\\%$ & Training $\\%$ & Exploration $\\%$ \\\\\nAlgorithm & context=A1,A2,A3 & context=A1,A2,A3 & context=A1,A2,A3 \\\\\n\\hline\n(Z1,S1) CoS & 0.7, 4.6, 4.8 & 0.3, 3, 2.8 & 1.4, 6.3, 8.5 \\\\\n\\hline\n(Z1,S1) DCZA & 1.4, 3.5, 3.2 & 0.4, 1.3, 0.9 & 4, 5.9, 7 \\\\\n\\hline\n(Z1,S2) CoS & 0.9, 39, 10 & 0.3, 3, 2.8 & 1.5, 6.5, 8.6 \\\\\n\\hline\n(Z1,S2) DCZA & 1.9, 38, 4.8 & 0.4, 1.3, 1 & 4, 6, 7 \\\\\n\\hline\n(Z2,S1) CoS & 16, 14, 41 & 8.5, 16, 79 & 55 27 20\\\\\n\\hline\n(Z2,S1) DCZA & 31, 29, 29 & 33 19 87 & 66 66 12 \\\\\n\\hline \n\\end{tabular}\n}\n\\add{\\vspace{-0.05in}}\n\\caption{Error, training and exploration percentages of CoS and DCZA under different simulation and parameter settings. (A1) context as the previous label, (A2) context as srcbytes feature, (A3) context as time.}\n\\label{tab:sim_results}\n%\\vspace{-0.4in}\n\\vspace{-0.2in}\n\\end{table}",
"extracted_content": [
[
"(Setting)\nAlgorithm",
"Error %\ncontext=A1,A2,A3",
"Training %\ncontext=A1,A2,A3",
"Exploration %\ncontext=A1,A2,A3"
],
[
"(Z1,S1) CoS",
"0.7, 4.6, 4.8",
"0.3, 3, 2.8",
"1.4, 6.3, 8.5"
],
[
"(Z1,S1) DCZA",
"1.4, 3.5, 3.2",
"0.4, 1.3, 0.9",
"4, 5.9, 7"
],
[
"(Z1,S2) CoS",
"0.9, 39, 10",
"0.3, 3, 2.8",
"1.5, 6.5, 8.6"
],
[
"(Z1,S2) DCZA",
"1.9, 38, 4.8",
"0.4, 1.3, 1",
"4, 6, 7"
],
[
"(Z2,S1) CoS",
"16, 14, 41",
"8.5, 16, 79",
"55 27 20"
],
[
"(Z2,S1) DCZA",
"31, 29, 29",
"33 19 87",
"66 66 12"
]
],
"similarity_score": 0.6673228346456693,
"table_image": "images/1308.4565v2/table_3.png",
"page_image": "pages/1308.4565v2/page_12.png"
},
{
"id": 4,
"page": 12,
"bounding_box": [
315.0172058105469,
53.33697509765625,
557.1978149414062,
84.12298583984375
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|c|}\n\\hline\n(Setting) & Error $\\%$ & Training $\\%$ & Exploration $\\%$ \\\\\nAlgorithm & context=A1,A2,A3 & context=A1,A2,A3 & context=A1,A2,A3 \\\\\n\\hline\n(Z1,S1) CoS & 1.8, 4.1, 6.7 & 2, 9.2, 10.3 & 1.4, 3.6, 8.5 \\\\\n\\hline\n(Z1,S2) CoS & 24.6, 44.3, 31.3 & 2, 9.2, 10.3 & 1.4, 3.6, 8.5 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error, training and exploration percentages of CoS for worst-case correlation between the learners for three different context types.}\n\\label{tab:sim_results2}\n\\vspace{-0.2in}\n%\\vspace{-0.4in}\n\\end{table}",
"extracted_content": [
[
"(Setting)\nAlgorithm",
"Error %\ncontext=A1,A2,A3",
"Training %\ncontext=A1,A2,A3",
"Exploration %\ncontext=A1,A2,A3"
],
[
"(Z1,S1) CoS",
"1.8, 4.1, 6.7",
"2, 9.2, 10.3",
"1.4, 3.6, 8.5"
],
[
"(Z1,S2) CoS",
"24.6, 44.3, 31.3",
"2, 9.2, 10.3",
"1.4, 3.6, 8.5"
]
],
"similarity_score": 0.5601374570446735,
"table_image": "images/1308.4565v2/table_4.png",
"page_image": "pages/1308.4565v2/page_12.png"
},
{
"id": 5,
"page": 12,
"bounding_box": [
315.0172058105469,
131.89801025390625,
557.1978149414062,
162.83367919921875
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.3em}\n\\begin{tabular}{|l|c|c|}\n\\hline\nensemble CoS & context-dependent weights & context-indep weights \\\\\nParameters: Z1 & S1, S2 & S1, S2 \\\\\n\\hline\ntotal error $\\%$ & 5.9, 10.2 & 3.8, 4.94 \\\\\n\\hline\nexploitation error $\\%$ & 2.9, 6.8 & 1.76, 2.17 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Total error percentage, and error percentage of the errors made in exploitation steps for CoS with ensemble learner.}\n\\label{tab:weights}\n%\\vspace{-0.4in}\n\\vspace{-0.2in}\n\\end{table}",
"extracted_content": [
[
"ensemble CoS\nParameters: Z1",
"context-dependent weights\nS1, S2",
"context-indep weights\nS1, S2"
],
[
"total error %",
"5.9, 10.2",
"3.8, 4.94"
],
[
"exploitation error %",
"2.9, 6.8",
"1.76, 2.17"
]
],
"similarity_score": 0.5910064239828694,
"table_image": "images/1308.4565v2/table_5.png",
"page_image": "pages/1308.4565v2/page_12.png"
},
{
"id": 6,
"page": 13,
"bounding_box": [
75.31724739074707,
53.33697509765625,
270.87100982666016,
76.99033610026042
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n(Setting) Algorithm /$p_r$ & 1 & 0.5 & 0.1 & 0.01 \\\\\n\\hline\n(Z1,S2) CoS (context is time) error $\\%$ & 10 & 13.9 & 36.4 & 47.1 \\\\\n\\hline\n(Z1,S2) DCZA (context is time) error $\\%$ & 4.8 & 4.8 & 16.3 & 56.6 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error percentages of CoS and DCZA as a function of $p_r$ (probability of receiving the label at each time slot) when context is time.}\n\\vspace{-0.2in}\n\\label{tab:errorperc}\n\\end{table}",
"extracted_content": [
[
"(Setting) Algorithm /pr",
"1",
"0.5",
"0.1",
"0.01"
],
[
"(Z1,S2) CoS (context is time) error %",
"10",
"13.9",
"36.4",
"47.1"
],
[
"(Z1,S2) DCZA (context is time) error %",
"4.8",
"4.8",
"16.3",
"56.6"
]
],
"similarity_score": 0.6533333333333333,
"table_image": "images/1308.4565v2/table_6.png",
"page_image": "pages/1308.4565v2/page_13.png"
},
{
"id": 7,
"page": 13,
"bounding_box": [
115.25924873352051,
127.00900268554688,
230.9290008544922,
150.31732177734375
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n$\\#$ of learners & 1 & 2 & 3 & 4 \\\\\n\\hline\nCoS error $\\%$ & 49.8 & 49.7 & 50.2 & 22.3 \\\\\n\\hline\nDCZA error $\\%$ & 49.8 & 49.8 & 49.8 & 22.7 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error percentages of CoS and DCZA for learner 1, as a function of the number of learners present in the system.}\n\\vspace{-0.2in}\n\\label{tab:nlearn}\n\\end{table}",
"extracted_content": [
[
"# of learners",
"1",
"2",
"3",
"4"
],
[
"CoS error %",
"49.8",
"49.7",
"50.2",
"22.3"
],
[
"DCZA error %",
"49.8",
"49.8",
"49.8",
"22.7"
]
],
"similarity_score": 0.5503355704697986,
"table_image": "images/1308.4565v2/table_7.png",
"page_image": "pages/1308.4565v2/page_13.png"
},
{
"id": 8,
"page": 13,
"bounding_box": [
321.277837117513,
53.33697509765625,
550.9371643066406,
91.61798095703125
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\nd & error $\\%$ & training $\\%$ & selection (except training/exploration) $\\%$ \\\\\n& & of learners 2,3,4 & of learners 1,2,3,4 \\\\ \n\\hline\n0 & 0.9 & 0.27, 0.23, 0.16 & 52.9, 47, 0.1, 0\\\\\n\\hline\n0.5 & 1 & 0.27, 0.23, 0.16 & 53, 47, 0, 0 \\\\\n\\hline\n0.7 & 23.7 &0.27, 0.23, 0.16 & 100, 0, 0, 0\\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error and arm selection percentages as a function of calling cost}\n\\vspace{-0.25in}\n\\label{tab:callcost}\n\\end{table}",
"extracted_content": [
[
"d",
"error %",
"training %\nof learners 2,3,4",
"selection (except training/exploration) %\nof learners 1,2,3,4"
],
[
"0",
"0.9",
"0.27, 0.23, 0.16",
"52.9, 47, 0.1, 0"
],
[
"0.5",
"1",
"0.27, 0.23, 0.16",
"53, 47, 0, 0"
],
[
"0.7",
"23.7",
"0.27, 0.23, 0.16",
"100, 0, 0, 0"
]
],
"similarity_score": 0.7475538160469667,
"table_image": "images/1308.4565v2/table_8.png",
"page_image": "pages/1308.4565v2/page_13.png"
},
{
"id": 9,
"page": 13,
"bounding_box": [
328.08721313476565,
127.00900268554688,
544.1278076171875,
159.4329833984375
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\fontsize{8}{6}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|}\n\\hline\n(Setting) Algorithm & previous label (A1) & srcbytes (A2) & time \\\\\n& is context & is context & is context \\\\\n\\hline\n(Z1,S1) CoS error $\\%$ & 2.68 & 3.64 & 6.43 \\\\\n\\hline\n(Z1,S2) CoS error $\\%$ & 23.8 & 42.6 & 29 \\\\\n\\hline\n\\end{tabular}\n}\n\\caption{Error percentages of CoS for learner 1, when learner 1 only sends its context information to the other learners.}\n\\vspace{-0.3in}\n\\label{tab:onlycontext}\n\\end{table}",
"extracted_content": [
[
"(Setting) Algorithm",
"previous label (A1)\nis context",
"srcbytes (A2)\nis context",
"time\nis context"
],
[
"(Z1,S1) CoS error %",
"2.68",
"3.64",
"6.43"
],
[
"(Z1,S2) CoS error %",
"23.8",
"42.6",
"29"
]
],
"similarity_score": 0.6311111111111111,
"table_image": "images/1308.4565v2/table_9.png",
"page_image": "pages/1308.4565v2/page_13.png"
},
{
"id": 10,
"page": 3,
"bounding_box": [
49.1465003490448,
53.33697509765625,
305.9354419708252,
162.17901611328125
],
"latex_content": "\\begin{table}[t]\n\\centering\n{\\renewcommand{\\arraystretch}{0.6}\n{\\fontsize{8}{7}\\selectfont\n\\setlength{\\tabcolsep}{.1em}\n\\begin{tabular}{|l|c|c|c|c|c|}\n\\hline\n& \\cite{breiman1996bagging, buhlmann2003boosting, lazarevic2001distributed, chen2004channel, perlich2011cross} & \\cite{mateos2010distributed, kargupta1999collective} & \\cite{zheng2011attribute} & This work \\\\\n\\hline\nAggregation & non-cooperative & cooperative & cooperative & \\rev{no} \\\\\n\\hline\nMessage & none & data & training & data and label \\\\\nexchange & & & residual & only if improves \\\\\n& & & & performance \\\\\n\\hline\nLearning & offline/online & offline & offline & Non-bayesian \\\\\napproach&&&& online\\\\\n\\hline\nCorrelation & N/A & no & no & yes\\\\\nexploitation & & & &\\\\\n\\hline\nInformation from & no & all & all & only if improves \\\\\nother learners & & & & accuracy \\\\\n\\hline\nData partition & horizontal & horizontal & vertical & horizontal \\\\\n&&&& and vertical \\\\\n\\hline\nBound on regret, & no &no &no &yes - sublinear\\\\\nconvergence rate &&&&\\\\\n\\hline\n\\end{tabular}\n}\n}\n\\caption{Comparison with related work in distributed data mining.}\n\\label{tab:comparison1}\n\\vspace{-0.2in}\n\\end{table}",
"extracted_content": [
[
"",
"[6], [11], [16]\u2013[18]",
"[10], [12]",
"[8]",
"This work"
],
[
"Aggregation",
"non-cooperative",
"cooperative",
"cooperative",
"no"
],
[
"Message\nexchange",
"none",
"data",
"training\nresidual",
"data and label\nonly if improves\nperformance"
],
[
"Learning\napproach",
"offline/online",
"offline",
"offline",
"Non-bayesian\nonline"
],
[
"Correlation\nexploitation",
"N/A",
"no",
"no",
"yes"
],
[
"Information from\nother learners",
"no",
"all",
"all",
"only if improves\naccuracy"
],
[
"Data partition",
"horizontal",
"horizontal",
"vertical",
"horizontal\nand vertical"
],
[
"Bound on regret,\nconvergence rate",
"no",
"no",
"no",
"yes - sublinear"
]
],
"similarity_score": 0.43297252289758537,
"table_image": "images/1308.4565v2/table_10.png",
"page_image": "pages/1308.4565v2/page_3.png"
}
]