|
[ |
|
{ |
|
"id": 0, |
|
"page": 4, |
|
"bounding_box": [ |
|
139.5268300374349, |
|
72.198974609375, |
|
472.4731699625651, |
|
255.51202392578125 |
|
], |
|
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | p{3cm} | p{3cm} | p{3cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2.5cm} |}\n\\hline\nName & Number of classes & Total number of sample & \\#Input Features\\\\\n\\hline\nExtended Yale Face Dataset (Frontal Pose) & 38 & 2432 & 900 \\\\ \\hline\nExtended Yale Face Dataset (All Poses) & 28 & 11482 & 900 \\\\ \\hline\nNCKU Taiwan Face Dataset & 90 & 3330 & 768 \\\\ \\hline\nMNIST Dataset & 10 & 70000 & 784 \\\\ \\hline\n\\end{tabular}\n \\\\\n\\end{center}\n\\caption{List of datasets used for benchmarking}\n\\label{table:dataset-summary}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Name", |
|
"Number of\nclasses", |
|
"Total number\nof sample", |
|
"#Input\nFeatures" |
|
], |
|
[ |
|
"Extended Yale\nFace Dataset\n(Frontal Pose)", |
|
"38", |
|
"2432", |
|
"900" |
|
], |
|
[ |
|
"Extended Yale\nFace Dataset\n(All Poses)", |
|
"28", |
|
"11482", |
|
"900" |
|
], |
|
[ |
|
"NCKU\nTaiwan Face\nDataset", |
|
"90", |
|
"3330", |
|
"768" |
|
], |
|
[ |
|
"MNIST\nDataset", |
|
"10", |
|
"70000", |
|
"784" |
|
] |
|
], |
|
"similarity_score": 0.8833652007648184, |
|
"table_image": "images/1607.01354v1/table_0.png", |
|
"page_image": "pages/1607.01354v1/page_4.png" |
|
}, |
|
{ |
|
"id": 1, |
|
"page": 5, |
|
"bounding_box": [ |
|
167.8785683768136, |
|
334.4599914550781, |
|
444.1215558733259, |
|
504.2229919433594 |
|
], |
|
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{900}$ & Accuracy in $R^{64}$\\\\\n\\hline\nNeural Network & 75-50-38 & & 98.3\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 60.6\\% & 97.3\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 60.3\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 58.5\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 56.7\\% & 97.5\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on Extended Yale B (Frontal) Face data set}\n\\label{table:cropped-yale-res}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Classifier", |
|
"Setting", |
|
"Accuracy\nin R900", |
|
"Accuracy\nin R64" |
|
], |
|
[ |
|
"Neural\nNetwork", |
|
"75-50-38", |
|
"", |
|
"98.3%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=3", |
|
"60.6%", |
|
"97.3%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=5", |
|
"60.3%", |
|
"97.5%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=7", |
|
"58.5%", |
|
"97.5%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=9", |
|
"56.7%", |
|
"97.5%" |
|
] |
|
], |
|
"similarity_score": 0.4260355029585799, |
|
"table_image": "images/1607.01354v1/table_1.png", |
|
"page_image": "pages/1607.01354v1/page_5.png" |
|
}, |
|
{ |
|
"id": 2, |
|
"page": 6, |
|
"bounding_box": [ |
|
133.33400344848633, |
|
72.198974609375, |
|
478.6657485961914, |
|
171.02899169921875 |
|
], |
|
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | p{1cm} | p{1cm} | p{1cm} | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | }\n\\hline\nStudy & \\#Subjects & \\#Train Images per Subject & \\#Model Params (million) & Accuracy\\\\\n\\hline\nCurrent Paper & 38 & 48 & 0.5 & 98.3\\% \\\\ \\hline\nHinton et. al. \\cite{conf/icml/TangSH12a} & 10 & 7 & 1.3 & 97\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Comparison of results on Extended Yale B (Frontal) data set}\n\\label{table:yale-frontal-compare}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Study", |
|
"#Subjects", |
|
"#Train\nImages per\nSubject", |
|
"#Model\nParams\n(million)", |
|
"Accuracy" |
|
], |
|
[ |
|
"Current\nPaper", |
|
"38", |
|
"48", |
|
"0.5", |
|
"98.3%" |
|
], |
|
[ |
|
"Hinton et.\nal. [22]", |
|
"10", |
|
"7", |
|
"1.3", |
|
"97%" |
|
] |
|
], |
|
"similarity_score": 0.7058823529411765, |
|
"table_image": "images/1607.01354v1/table_2.png", |
|
"page_image": "pages/1607.01354v1/page_6.png" |
|
}, |
|
{ |
|
"id": 3, |
|
"page": 7, |
|
"bounding_box": [ |
|
167.8785683768136, |
|
72.198974609375, |
|
444.1215558733259, |
|
241.9630126953125 |
|
], |
|
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{900}$ & Accuracy in $R^{64}$\\\\\n\\hline\nNeural Network & 75-50-38 & & 95.7\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 81.6\\% & 95.4\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 81.3\\% & 95.4\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 81.0\\% & 95.4\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 80.5\\% & 95.3\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on Extended Yale B (All Pose) face data set}\n\\label{table:yale-all-pose-res}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Classifier", |
|
"Setting", |
|
"Accuracy\nin R900", |
|
"Accuracy\nin R64" |
|
], |
|
[ |
|
"Neural\nNetwork", |
|
"75-50-38", |
|
"", |
|
"95.7%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=3", |
|
"81.6%", |
|
"95.4%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=5", |
|
"81.3%", |
|
"95.4%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=7", |
|
"81.0%", |
|
"95.4%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=9", |
|
"80.5%", |
|
"95.3%" |
|
] |
|
], |
|
"similarity_score": 0.6444007858546169, |
|
"table_image": "images/1607.01354v1/table_3.png", |
|
"page_image": "pages/1607.01354v1/page_7.png" |
|
}, |
|
{ |
|
"id": 4, |
|
"page": 7, |
|
"bounding_box": [ |
|
167.8785683768136, |
|
277.57000732421875, |
|
444.1215558733259, |
|
447.3340148925781 |
|
], |
|
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{768}$ & Accuracy in $R^{25}$\\\\\n\\hline\nNeural Network & 25-50-90 & & 99.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 97.171\\% & 99.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 94.44\\% & 99.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 91.81\\% & 99.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 89.09\\% & 99.6\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on Taiwan Face data set}\n\\label{table:taiwan-res}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Classifier", |
|
"Setting", |
|
"Accuracy\nin R768", |
|
"Accuracy\nin R25" |
|
], |
|
[ |
|
"Neural\nNetwork", |
|
"25-50-90", |
|
"", |
|
"99.5%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=3", |
|
"97.171%", |
|
"99.6%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=5", |
|
"94.44%", |
|
"99.6%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=7", |
|
"91.81%", |
|
"99.6%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=9", |
|
"89.09%", |
|
"99.6%" |
|
] |
|
], |
|
"similarity_score": 0.8008130081300813, |
|
"table_image": "images/1607.01354v1/table_4.png", |
|
"page_image": "pages/1607.01354v1/page_7.png" |
|
}, |
|
{ |
|
"id": 5, |
|
"page": 8, |
|
"bounding_box": [ |
|
167.8785683768136, |
|
96.70501708984375, |
|
444.1215558733259, |
|
266.468994140625 |
|
], |
|
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | c | c | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nClassifier & Setting & Accuracy in $R^{784}$ & Accuracy in $R^{36}$\\\\\n\\hline\nNeural Network & 36-5-10 & & 98.08\\% \\\\ \\hline\nk-Nearest Neighbor & k=3 & 97.05\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=5 & 96.88\\% & 97.5\\% \\\\ \\hline\nk-Nearest Neighbor & k=7 & 96.94\\% & 97.6\\% \\\\ \\hline\nk-Nearest Neighbor & k=9 & 96.59\\% & 97.6\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results on MNIST data set}\n\\label{table:mnist-res}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Classifier", |
|
"Setting", |
|
"Accuracy\nin R784", |
|
"Accuracy\nin R36" |
|
], |
|
[ |
|
"Neural\nNetwork", |
|
"36-5-10", |
|
"", |
|
"98.08%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=3", |
|
"97.05%", |
|
"97.5%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=5", |
|
"96.88%", |
|
"97.5%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=7", |
|
"96.94%", |
|
"97.6%" |
|
], |
|
[ |
|
"k-Nearest\nNeighbor", |
|
"k=9", |
|
"96.59%", |
|
"97.6%" |
|
] |
|
], |
|
"similarity_score": 0.5714285714285714, |
|
"table_image": "images/1607.01354v1/table_5.png", |
|
"page_image": "pages/1607.01354v1/page_8.png" |
|
}, |
|
{ |
|
"id": 6, |
|
"page": 8, |
|
"bounding_box": [ |
|
160.78020629882812, |
|
368.5159912109375, |
|
451.21979370117185, |
|
523.5339965820312 |
|
], |
|
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | p{1.2cm} | p{1.8cm} | p{1cm} | p{1cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2.5cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} |}\n\\hline\nStudy & Method & \\#Model Params (million) & Accuracy\\\\\n\\hline\nThis Paper & Discriminative Encoder & 0.23 & 98.08\\% \\\\ \\hline\nHinton et. al. \\cite{journals/jmlr/SalakhutdinovH07} & Autoencoder & 1.7 & 99\\% \\\\ \\hline\nSchmidhuber et. al. \\cite{journals/corr/abs-1003-0358} & Simple Deep Neural Nets + Elastic Distortions & 11.9 mil & 99.65\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Comparison of results on MNIST data set}\n\\label{table:mnist-compare}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Study", |
|
"Method", |
|
"#Model\nParams\n(million)", |
|
"Accuracy" |
|
], |
|
[ |
|
"This Paper", |
|
"Discriminative\nEncoder", |
|
"0.23", |
|
"98.08%" |
|
], |
|
[ |
|
"Hinton et.\nal. [16]", |
|
"Autoencoder", |
|
"1.7", |
|
"99%" |
|
], |
|
[ |
|
"Schmidhuber\net. al. [2]", |
|
"Simple Deep\nNeural Nets +\nElastic\nDistortions", |
|
"11.9 mil", |
|
"99.65%" |
|
] |
|
], |
|
"similarity_score": 0.6913123844731978, |
|
"table_image": "images/1607.01354v1/table_6.png", |
|
"page_image": "pages/1607.01354v1/page_8.png" |
|
}, |
|
{ |
|
"id": 7, |
|
"page": 9, |
|
"bounding_box": [ |
|
72.1658312479655, |
|
97.7020263671875, |
|
551.9191487630209, |
|
294.9620056152344 |
|
], |
|
"latex_content": "\\begin{table}[h]\n\\begin{center}\n%\\begin{tabular}{ | p{1cm} | p{0.5cm}| p{0.65cm}| p{1.05cm}| p{1.05cm} | p{0.45cm} | p{0.45cm} |p{0.45cm}| p{0.45cm} | }\n\\begin{tabular}{| >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{1.5cm} | >{\\centering\\arraybackslash}m{1.5cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{2cm} | >{\\centering\\arraybackslash}m{1cm} | >{\\centering\\arraybackslash}m{1cm} | >{\\centering\\arraybackslash}m{1cm} | >{\\centering\\arraybackslash}m{1cm} |}\n\\hline\nDataset & Input Space Size & Reduced Space Size & Network (AE) & Network (DE) & IS & PCA & AE & DE\\\\ \\hline\nYale (Frontal Pose) & 900 & 64 & 400-200-64-200-400-900 & 400-200-64-900 & 60.6\\% & 51.4\\% & 82.4\\% & 97.3\\% \\\\ \\hline\nYale (All Poses) & 900 & 64 & 400-200-64-200-400-900 & 400-200-64-900 & 81.6\\% & 74.6\\% & 89.1\\% & 95.4\\% \\\\ \\hline\nTaiwan Face Db & 768 & 25 & 196-64-25-64-196-768 & 196-64-25-768 & 97.1\\% & 96.9\\% & 96.8\\% & 99.6\\% \\\\ \\hline\nMNIST & 784 & 36 & 225-100-36-100-225-784 & 225-100-36-784 & 97.0\\% & 97.3\\% & 97.0\\% & 97.5\\% \\\\ \\hline\n\\end{tabular}\n\\\\\n\\end{center}\n\\caption{Results of 3-NN classifier on all datasets using various dimensionality reduction approaches: IS (original input space), PCA (principal component analysis), AE (autoencoder), DE (discriminative encoder)}\n\\label{table:summary-res}\n\\end{table}", |
|
"extracted_content": [ |
|
[ |
|
"Dataset", |
|
"Input\nSpace\nSize", |
|
"Reduced\nSpace\nSize", |
|
"Network\n(AE)", |
|
"Network\n(DE)", |
|
"IS", |
|
"PCA", |
|
"AE", |
|
"DE" |
|
], |
|
[ |
|
"Yale\n(Frontal\nPose)", |
|
"900", |
|
"64", |
|
"400-200-\n64-200-\n400-900", |
|
"400-200-\n64-900", |
|
"60.6%", |
|
"51.4%", |
|
"82.4%", |
|
"97.3%" |
|
], |
|
[ |
|
"Yale (All\nPoses)", |
|
"900", |
|
"64", |
|
"400-200-\n64-200-\n400-900", |
|
"400-200-\n64-900", |
|
"81.6%", |
|
"74.6%", |
|
"89.1%", |
|
"95.4%" |
|
], |
|
[ |
|
"Taiwan\nFace Db", |
|
"768", |
|
"25", |
|
"196-64-25-\n64-196-768", |
|
"196-64-25-\n768", |
|
"97.1%", |
|
"96.9%", |
|
"96.8%", |
|
"99.6%" |
|
], |
|
[ |
|
"MNIST", |
|
"784", |
|
"36", |
|
"225-100-\n36-100-\n225-784", |
|
"225-100-\n36-784", |
|
"97.0%", |
|
"97.3%", |
|
"97.0%", |
|
"97.5%" |
|
] |
|
], |
|
"similarity_score": 0.4491362763915547, |
|
"table_image": "images/1607.01354v1/table_7.png", |
|
"page_image": "pages/1607.01354v1/page_9.png" |
|
} |
|
] |