TinyLlama-CPT / multilinguality_megatron /tools /checkpoint_loader_megatron.py
sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
import json
import os
import sys
import types
import torch
def add_arguments(parser):
group = parser.add_argument_group(title="Megatron loader")
group.add_argument(
"--true_vocab_size",
type=int,
default=None,
help="original size of vocab, if specified will trim padding from embedding table.",
)
group.add_argument(
"--vocab_file",
type=str,
default=None,
help="Path to the vocab file. If specified will use this to get vocab size and "
"trim padding from the embedding table.",
)
group.add_argument(
"--megatron_path",
type=str,
default=None,
help="Base directory of deepspeed repository",
)
def _load_checkpoint(queue, args):
# Search in directory above this
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
if args.megatron_path is not None:
sys.path.insert(0, args.megatron_path)
try:
import megatron.arguments
from megatron import fused_kernels
from megatron.checkpointing import load_args_from_checkpoint, load_checkpoint
from megatron.core import mpu
from megatron.global_vars import set_global_variables
from megatron.model import ModelType, module
from megatron.model.enums import PositionEmbeddingType
except ModuleNotFoundError:
print(
"Unable to import Megatron, please specify the path to Megatron using --megatron_path. Exiting."
)
queue.put("exit")
exit(1)
# We want all arguments to come from us
sys.argv = [
"script.py",
"--no_masked_softmax_fusion",
"--no_bias_gelu_fusion",
"--no_bias_dropout_fusion",
"--use_cpu_initialization",
"--micro_batch_size",
"1",
"--no_load_optim",
"--no_load_rng",
"--no_save_optim",
"--no_save_rng",
"--no_initialization",
"--load",
args.load_dir,
]
if args.bf16:
sys.argv += ["--bf16"]
margs = megatron.arguments.parse_args()
margs = load_args_from_checkpoint(margs)
# Arguments do sanity checks on the world size, but we don't care,
# so trick it into thinking we are plenty of processes
margs.world_size = (
margs.tensor_model_parallel_size * margs.pipeline_model_parallel_size
)
margs = megatron.arguments.validate_args(margs)
def check_for_arg(arg_name):
if getattr(margs, arg_name, None) is None:
print(f"Checkpoint does not specify the argument {arg_name}. Exiting.")
print(f"Arguments: {margs}")
queue.put("exit")
exit(1)
check_for_arg("tensor_model_parallel_size")
check_for_arg("pipeline_model_parallel_size")
check_for_arg("num_layers")
check_for_arg("hidden_size")
check_for_arg("seq_length")
check_for_arg("num_attention_heads")
check_for_arg("max_position_embeddings")
check_for_arg("tokenizer_type")
check_for_arg("iteration")
check_for_arg("params_dtype")
if args.model_type == "BERT":
check_for_arg("bert_binary_head")
# Determine how to make our models
if args.model_type == "GPT":
from pretrain_gpt import model_provider
margs.model_type = ModelType.encoder_or_decoder
elif args.model_type in {"falcon", "llama", "llama2", "llama3", "codellama", "mistral", "gemma"}:
from finetune import model_provider
margs.model_name = args.model_type
margs.model_type = ModelType.encoder_or_decoder
if args.model_type=="gemma":
margs.kv_channels = args.kv_channels
elif args.model_type == "BERT":
from pretrain_bert import model_provider
margs.model_type = ModelType.encoder_or_decoder
else:
raise Exception(f"unrecognized model type: {args.model_type}")
# supress warning about torch.distributed not being initialized
module.MegatronModule.embedding_warning_printed = True
consumed_train_samples = None
consumed_valid_samples = None
def _get_models(count, dtype, pre_process, post_process):
nonlocal consumed_train_samples
nonlocal consumed_valid_samples
models = []
for rank in range(count):
mpu.set_tensor_model_parallel_rank(rank)
model_ = [model_provider(pre_process, post_process).to(dtype)]
margs.consumed_train_samples = 0
margs.consumed_valid_samples = 0
load_checkpoint(model_, None, None)
assert len(model_) == 1
model_ = model_[0]
if consumed_train_samples is not None:
assert margs.consumed_train_samples == consumed_train_samples
else:
consumed_train_samples = margs.consumed_train_samples
if consumed_valid_samples is not None:
assert margs.consumed_valid_samples == consumed_valid_samples
else:
consumed_valid_samples = margs.consumed_valid_samples
models.append(model_)
return models
if margs.num_layers_per_virtual_pipeline_stage is not None:
print("Model with an interleaved pipeline schedule are not yet supported.")
queue.put("exit")
exit(1)
set_global_variables(margs)
mpu._DATA_PARALLEL_GROUP = 0
mpu.set_tensor_model_parallel_world_size(margs.tensor_model_parallel_size)
mpu.set_pipeline_model_parallel_world_size(margs.pipeline_model_parallel_size)
fused_kernels.load(margs)
# Get true (non-padded) vocab size
if args.true_vocab_size is not None:
true_vocab_size = args.true_vocab_size
elif args.vocab_file is not None:
vocab = json.load(open(args.vocab_file))
true_vocab_size = len(vocab)
if args.true_vocab_size is not None and true_vocab_size != args.true_vocab_size:
print(
"Both --true_vocab_size and --vocab_file specified and the vocab size does not match, aborting."
)
queue.put("exit")
exit(1)
else:
true_vocab_size = None
# short aliases
tp_size = margs.tensor_model_parallel_size
pp_size = margs.pipeline_model_parallel_size
# metadata
md = types.SimpleNamespace()
md.model_type = args.model_type
md.num_layers = margs.num_layers
md.hidden_size = margs.hidden_size
md.seq_length = margs.seq_length
md.num_attention_heads = margs.num_attention_heads
md.max_position_embeddings = margs.max_position_embeddings
md.tokenizer_type = margs.tokenizer_type
md.iteration = margs.iteration
if args.model_type == "BERT":
md.bert_binary_head = margs.bert_binary_head
md.previous_tensor_parallel_size = margs.tensor_model_parallel_size
md.previous_pipeline_parallel_size = margs.pipeline_model_parallel_size
md.true_vocab_size = true_vocab_size
md.make_vocab_size_divisible_by = margs.make_vocab_size_divisible_by
md.num_attention_heads_kv = margs.num_attention_heads_kv
md.parallel_attn = margs.parallel_attn
md.parallel_layernorm = margs.parallel_layernorm
md.use_flash_attn = margs.use_flash_attn
md.hidden_dropout = margs.hidden_dropout
md.lima_dropout = margs.lima_dropout
md.use_bias = margs.use_bias
md.use_rms_norm = margs.use_rms_norm
md.ffn_hidden_size = margs.ffn_hidden_size
md.glu_activation = margs.glu_activation
md.tie_embed_logits = margs.tie_embed_logits
md.params_dtype = margs.params_dtype
md.sliding_window_size = margs.sliding_window_size
md.kv_channels = margs.kv_channels
if margs.position_embedding_type == PositionEmbeddingType.absolute:
md.position_embedding_type = "absolute"
elif margs.position_embedding_type == PositionEmbeddingType.rotary:
md.position_embedding_type = "rotary"
else:
raise KeyError(f"Unknown position embedding {margs.position_embedding_type}")
# Get first pipe stage
mpu.set_pipeline_model_parallel_rank(0)
post_process = pp_size == 1
models = _get_models(tp_size, md.params_dtype, True, post_process)
models_init = models
md.consumed_train_samples = consumed_train_samples
md.consumed_valid_samples = consumed_valid_samples
queue.put(md)
def queue_put(name, msg):
print(f"sending {name}")
msg["name"] = name
queue.put(msg)
message = {
"word embeddings": torch.cat(
[
models[tp_rank].language_model.embedding.word_embeddings.weight.data
for tp_rank in range(tp_size)
],
dim=0,
)
}
if margs.position_embedding_type == PositionEmbeddingType.absolute:
message["position embeddings"] = models[
0
].language_model.embedding.position_embeddings.weight.data
queue_put("embeddings", message)
# Get last pipe stage if lm_head needs to be sent
if not margs.tie_embed_logits:
mpu.set_pipeline_model_parallel_rank(pp_size - 1)
pre_process = pp_size == 1
if pre_process:
models = models_init
else:
models = _get_models(tp_size, md.params_dtype, pre_process, True)
models_final = models
queue_put(
"lm_head",
{
"lm_head": torch.cat(
[
models[tp_rank].language_model.lm_head.data
for tp_rank in range(tp_size)
]
)
},
)
total_layer_num = 0
for pp_rank in range(pp_size):
# For later pipeline parallel ranks, make the new models
mpu.set_pipeline_model_parallel_rank(pp_rank)
post_process = pp_rank == pp_size - 1
if pp_rank == 0:
models = models_init
elif pp_rank == pp_size - 1 and not md.tie_embed_logits:
models = models_final
else:
models = _get_models(tp_size, md.params_dtype, False, post_process)
for layer_num in range(len(models[0].language_model.encoder.layers)):
message = {}
# Get non-parallel tensors from tp_rank 0
layer = models[0].language_model.encoder.layers[layer_num]
message["input layernorm weight"] = layer.input_layernorm.weight.data
if margs.parallel_layernorm:
message["mlp layernorm weight"] = layer.mlp_layernorm.weight.data
if not margs.use_rms_norm:
message["input layernorm bias"] = layer.input_layernorm.bias.data
if margs.parallel_layernorm:
message["mlp layernorm bias"] = layer.mlp_layernorm.bias.data
if not margs.parallel_attn:
message[
"post layernorm weight"
] = layer.post_attention_layernorm.weight.data
if not margs.use_rms_norm:
message[
"post layernorm bias"
] = layer.post_attention_layernorm.bias.data
if margs.use_bias:
message["dense bias"] = layer.self_attention.dense.bias.data
message["mlp l1 bias"] = layer.mlp.dense_4h_to_h.bias.data
# Grab all parallel tensors for this layer
qkv_weight = []
qkv_bias = []
dense_weight = []
mlp_l0_weight = []
mlp_l0_bias = []
mlp_l1_weight = []
for tp_rank, model in enumerate(models):
layer = model.language_model.encoder.layers[layer_num]
qkv_weight.append(layer.self_attention.query_key_value.weight.data)
if margs.use_bias:
qkv_bias.append(layer.self_attention.query_key_value.bias.data)
dense_weight.append(layer.self_attention.dense.weight.data)
mlp_l0_weight.append(layer.mlp.dense_h_to_4h.weight.data)
if margs.use_bias:
mlp_l0_bias.append(layer.mlp.dense_h_to_4h.bias.data)
mlp_l1_weight.append(layer.mlp.dense_4h_to_h.weight.data)
# concat them
message["qkv weight"] = torch.cat(qkv_weight, dim=0)
if margs.use_bias:
message["qkv bias"] = torch.cat(qkv_bias, dim=0)
message["dense weight"] = torch.cat(dense_weight, dim=1)
if margs.glu_activation is None:
message["mlp l0 weight"] = torch.cat(mlp_l0_weight, dim=0)
else:
up_weights = []
gate_weights = []
for weight in mlp_l0_weight:
up, gate = torch.chunk(weight, 2, dim=0)
up_weights.append(up)
gate_weights.append(gate)
message["mlp l0 weight"] = torch.cat(up_weights + gate_weights, dim=0)
if margs.use_bias:
message["mlp l0 bias"] = torch.cat(mlp_l0_bias, dim=0)
message["mlp l1 weight"] = torch.cat(mlp_l1_weight, dim=1)
queue_put(f"transformer layer {total_layer_num}", message)
total_layer_num = total_layer_num + 1
# Send final layernorm from tp_rank 0
message = {"weight": models[0].language_model.encoder.final_layernorm.weight.data}
if not margs.use_rms_norm:
message["bias"] = models[0].language_model.encoder.final_layernorm.bias.data
queue_put("final layernorm", message)
# Send BERT lm head and binary head if it exists
if md.model_type == "BERT":
message = {
"weight": models[0].language_model.pooler.dense.weight.data,
"bias": models[0].language_model.pooler.dense.bias.data,
}
queue_put("pooler", message)
message = {
"dense weight": models[0].lm_head.dense.weight.data,
"dense bias": models[0].lm_head.dense.bias.data,
"layernorm weight": models[0].lm_head.layernorm.weight.data,
"layernorm bias": models[0].lm_head.layernorm.bias.data,
}
queue_put("lm head", message)
if args.model_type == "BERT" and md.bert_binary_head:
print("Sending BERT Binary head")
queue.put("binary head")
message = {
"weight": models[0].binary_head.weight.data,
"bias": models[0].binary_head.bias.data,
}
queue_put("binary head", message)
queue.put("done")
def load_checkpoint(queue, args):
try:
_load_checkpoint(queue, args)
except:
queue.put("exit")
raise