|
#include <torch/torch.h> |
|
#include <torch/extension.h> |
|
|
|
#include <vector> |
|
#include <stdio.h> |
|
|
|
#include "type_shim.h" |
|
|
|
|
|
template <typename T> |
|
int wgrad_gemm_accum_fp32_cuda(T *input, T *d_output, float *d_weight, int in_dim, int hidden_dim, int out_dim); |
|
|
|
void wgrad_gemm_accum_fp32(const at::Tensor input, const at::Tensor d_output, at::Tensor d_weight) { |
|
at::Tensor input_2d, d_output_2d; |
|
|
|
auto in_sizes = input.sizes(); |
|
if (input.dim() > 2) { |
|
input_2d = input.view({-1, in_sizes[in_sizes.size() - 1]}); |
|
} else { |
|
input_2d = input; |
|
} |
|
|
|
auto d_out_sizes = d_output.sizes(); |
|
if (d_output.dim() > 2) { |
|
d_output_2d = d_output.view({-1, d_out_sizes[d_out_sizes.size() - 1]}); |
|
} else { |
|
d_output_2d = d_output; |
|
} |
|
|
|
int hidden_dim = input_2d.size(0); |
|
int in_dim = input_2d.size(1); |
|
int out_dim = d_weight.size(0); |
|
|
|
DISPATCH_HALF_BFLOAT_AND_FLOAT(input_2d.scalar_type(), "wgrad_gemm_accum_fp32", |
|
int result = wgrad_gemm_accum_fp32_cuda<scalar_t>( |
|
input_2d.data_ptr<scalar_t>(), |
|
d_output_2d.data_ptr<scalar_t>(), |
|
d_weight.data_ptr<float>(), |
|
in_dim, |
|
hidden_dim, |
|
out_dim); |
|
); |
|
} |
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { |
|
m.def("wgrad_gemm_accum_fp32", &wgrad_gemm_accum_fp32, "wgrad gemm accum in fp32"); |
|
} |
|
|