#include #include #include #include #include "type_shim.h" template int wgrad_gemm_accum_fp32_cuda(T *input, T *d_output, float *d_weight, int in_dim, int hidden_dim, int out_dim); void wgrad_gemm_accum_fp32(const at::Tensor input, const at::Tensor d_output, at::Tensor d_weight) { at::Tensor input_2d, d_output_2d; // input tensor: collapse to the first dim auto in_sizes = input.sizes(); if (input.dim() > 2) { input_2d = input.view({-1, in_sizes[in_sizes.size() - 1]}); } else { input_2d = input; } // d_output tensor: collapse to the first dim auto d_out_sizes = d_output.sizes(); if (d_output.dim() > 2) { d_output_2d = d_output.view({-1, d_out_sizes[d_out_sizes.size() - 1]}); } else { d_output_2d = d_output; } int hidden_dim = input_2d.size(0); int in_dim = input_2d.size(1); int out_dim = d_weight.size(0); DISPATCH_HALF_BFLOAT_AND_FLOAT(input_2d.scalar_type(), "wgrad_gemm_accum_fp32", int result = wgrad_gemm_accum_fp32_cuda( input_2d.data_ptr(), d_output_2d.data_ptr(), d_weight.data_ptr(), in_dim, hidden_dim, out_dim); ); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("wgrad_gemm_accum_fp32", &wgrad_gemm_accum_fp32, "wgrad gemm accum in fp32"); }