|
|
|
|
|
"""Megatron arguments.""" |
|
|
|
import argparse |
|
import os |
|
|
|
import torch |
|
|
|
import megatron |
|
from megatron.metrics import METRICS |
|
from megatron.model.enums import PositionEmbeddingType |
|
|
|
|
|
def build_base_parser(): |
|
parser = argparse.ArgumentParser(description='Megatron-LM Arguments', |
|
allow_abbrev=False) |
|
|
|
parser = _add_network_size_args(parser) |
|
parser = _add_regularization_args(parser) |
|
parser = _add_training_args(parser) |
|
parser = _add_initialization_args(parser) |
|
parser = _add_learning_rate_args(parser) |
|
parser = _add_checkpointing_args(parser) |
|
parser = _add_mixed_precision_args(parser) |
|
parser = _add_distributed_args(parser) |
|
parser = _add_validation_args(parser) |
|
parser = _add_data_args(parser) |
|
parser = _add_autoresume_args(parser) |
|
parser = _add_biencoder_args(parser) |
|
parser = _add_vision_args(parser) |
|
parser = _add_logging_args(parser) |
|
parser = _add_inference_args(parser) |
|
parser = _add_transformer_engine_args(parser) |
|
return parser |
|
|
|
|
|
def parse_args(extra_args_provider=None): |
|
"""Parse all arguments.""" |
|
parser = build_base_parser() |
|
|
|
if extra_args_provider is not None: |
|
parser = extra_args_provider(parser) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
args.rank = int(os.getenv('RANK', '0')) |
|
args.world_size = int(os.getenv("WORLD_SIZE", '1')) |
|
return args |
|
|
|
|
|
def validate_args(args, defaults={}): |
|
|
|
args.tensor_model_parallel_size = min( |
|
args.tensor_model_parallel_size, args.world_size) |
|
assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\ |
|
' ({}) is not divisible by tensor model parallel size ({})'.format( |
|
args.world_size, args.tensor_model_parallel_size) |
|
|
|
args.pipeline_model_parallel_size = min( |
|
args.pipeline_model_parallel_size, |
|
(args.world_size // args.tensor_model_parallel_size)) |
|
args.transformer_pipeline_model_parallel_size = ( |
|
args.pipeline_model_parallel_size - 1 |
|
if args.standalone_embedding_stage else |
|
args.pipeline_model_parallel_size |
|
) |
|
|
|
model_parallel_size = args.pipeline_model_parallel_size * \ |
|
args.tensor_model_parallel_size |
|
assert args.world_size % model_parallel_size == 0, 'world size is not'\ |
|
' divisible by tensor parallel size ({}) times pipeline parallel ' \ |
|
'size ({})'.format(args.world_size, args.tensor_model_parallel_size, |
|
args.pipeline_model_parallel_size) |
|
args.data_parallel_size = args.world_size // model_parallel_size |
|
if args.rank == 0: |
|
print('using world size: {}, data-parallel-size: {}, ' |
|
'tensor-model-parallel size: {}, ' |
|
'pipeline-model-parallel size: {} '.format( |
|
args.world_size, args.data_parallel_size, |
|
args.tensor_model_parallel_size, |
|
args.pipeline_model_parallel_size), flush=True) |
|
if args.pipeline_model_parallel_size > 1: |
|
if args.pipeline_model_parallel_split_rank is not None: |
|
assert args.pipeline_model_parallel_split_rank < \ |
|
args.pipeline_model_parallel_size, 'split rank needs'\ |
|
' to be less than pipeline model parallel size ({})'.format( |
|
args.pipeline_model_parallel_size) |
|
|
|
if args.recompute_activations: |
|
args.recompute_granularity = 'selective' |
|
del args.recompute_activations |
|
if args.metrics == ["all"]: |
|
args.metrics = list(METRICS) |
|
|
|
|
|
|
|
for key in defaults: |
|
|
|
|
|
|
|
if getattr(args, key) is not None: |
|
if args.rank == 0: |
|
print('WARNING: overriding default arguments for {key}:{v} \ |
|
with {key}:{v2}'.format(key=key, v=defaults[key], |
|
v2=getattr(args, key)), |
|
flush=True) |
|
else: |
|
setattr(args, key, defaults[key]) |
|
|
|
|
|
assert args.micro_batch_size is not None |
|
assert args.micro_batch_size > 0 |
|
if args.global_batch_size is None: |
|
args.global_batch_size = args.micro_batch_size * args.data_parallel_size |
|
if args.rank == 0: |
|
print('setting global batch size to {}'.format( |
|
args.global_batch_size), flush=True) |
|
assert args.global_batch_size > 0 |
|
if args.num_layers_per_virtual_pipeline_stage is not None: |
|
assert args.pipeline_model_parallel_size > 2, \ |
|
'pipeline-model-parallel size should be greater than 2 with ' \ |
|
'interleaved schedule' |
|
assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \ |
|
'number of layers is not divisible by number of layers per virtual ' \ |
|
'pipeline stage' |
|
args.virtual_pipeline_model_parallel_size = \ |
|
(args.num_layers // args.transformer_pipeline_model_parallel_size) // \ |
|
args.num_layers_per_virtual_pipeline_stage |
|
else: |
|
args.virtual_pipeline_model_parallel_size = None |
|
|
|
|
|
args.params_dtype = torch.float |
|
if args.fp16: |
|
assert not args.bf16 |
|
args.params_dtype = torch.half |
|
if args.bf16: |
|
assert not args.fp16 |
|
args.params_dtype = torch.bfloat16 |
|
|
|
|
|
if not args.accumulate_allreduce_grads_in_fp32: |
|
args.accumulate_allreduce_grads_in_fp32 = True |
|
if args.rank == 0: |
|
print('accumulate and all-reduce gradients in fp32 for ' |
|
'bfloat16 data type.', flush=True) |
|
|
|
if args.rank == 0: |
|
print('using {} for parameters ...'.format(args.params_dtype), |
|
flush=True) |
|
|
|
|
|
|
|
if args.accumulate_allreduce_grads_in_fp32: |
|
assert args.DDP_impl == 'local' |
|
assert args.use_contiguous_buffers_in_local_ddp |
|
|
|
|
|
|
|
if args.use_distributed_optimizer: |
|
assert args.DDP_impl == 'local' |
|
assert args.use_contiguous_buffers_in_local_ddp |
|
|
|
|
|
if args.DDP_impl == 'torch': |
|
args.use_contiguous_buffers_in_local_ddp = False |
|
|
|
if args.dataloader_type is None: |
|
args.dataloader_type = 'single' |
|
|
|
|
|
args.consumed_train_samples = 0 |
|
args.consumed_valid_samples = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.variable_seq_lengths is None: |
|
args.variable_seq_lengths = False |
|
|
|
|
|
if args.train_iters: |
|
|
|
|
|
assert args.train_samples is None, \ |
|
'expected iteration-based training' |
|
assert args.lr_decay_samples is None, \ |
|
'expected iteration-based learning rate decay' |
|
assert args.lr_warmup_samples == 0, \ |
|
'expected iteration-based learning rate warmup' |
|
assert args.rampup_batch_size is None, \ |
|
'expected no batch-size rampup for iteration-based training' |
|
if args.lr_warmup_fraction is not None: |
|
assert args.lr_warmup_iters == 0, \ |
|
'can only specify one of lr_warmup_fraction and lr_warmup_iters' |
|
|
|
|
|
if args.train_samples: |
|
|
|
|
|
assert args.train_iters is None, \ |
|
'expected sample-based training' |
|
assert args.lr_decay_iters is None, \ |
|
'expected sample-based learning rate decay' |
|
assert args.lr_warmup_iters == 0, \ |
|
'expected sample-based learning rate warmup' |
|
if args.lr_warmup_fraction is not None: |
|
assert args.lr_warmup_samples == 0, \ |
|
'can only specify one of lr_warmup_fraction ' \ |
|
'and lr_warmup_samples' |
|
|
|
if args.num_layers is not None: |
|
assert args.encoder_num_layers is None, \ |
|
'cannot have both num_layers and encoder_num_layers specified' |
|
args.encoder_num_layers = args.num_layers |
|
else: |
|
assert args.encoder_num_layers is not None, \ |
|
'either num_layers or encoder_num_layers should be specified' |
|
args.num_layers = args.encoder_num_layers |
|
|
|
|
|
|
|
|
|
required_args = ['num_layers', 'hidden_size', 'num_attention_heads'] |
|
for req_arg in required_args: |
|
_check_arg_is_not_none(args, req_arg) |
|
|
|
|
|
if args.ffn_hidden_size is None: |
|
args.ffn_hidden_size = 4 * args.hidden_size |
|
|
|
if args.kv_channels is None: |
|
assert args.hidden_size % args.num_attention_heads == 0 |
|
args.kv_channels = args.hidden_size // args.num_attention_heads |
|
|
|
if args.num_attention_heads_kv is None: |
|
args.num_attention_heads_kv = args.num_attention_heads |
|
|
|
if args.seq_length is not None: |
|
assert args.encoder_seq_length is None |
|
args.encoder_seq_length = args.seq_length |
|
else: |
|
assert args.encoder_seq_length is not None |
|
args.seq_length = args.encoder_seq_length |
|
|
|
if not isinstance(args.position_embedding_type, PositionEmbeddingType): |
|
args.position_embedding_type = PositionEmbeddingType[args.position_embedding_type] |
|
if args.position_embedding_type in [PositionEmbeddingType.absolute, PositionEmbeddingType.rotary]: |
|
assert args.max_position_embeddings is not None |
|
if args.seq_length is not None: |
|
assert args.max_position_embeddings >= args.seq_length |
|
if args.decoder_seq_length is not None: |
|
assert args.max_position_embeddings >= args.decoder_seq_length |
|
assert args.rope_scaling_factor >= 1, 'rope_scaling_factor must be >= 1' |
|
else: |
|
assert args.max_position_embeddings is None |
|
|
|
if args.lr is not None: |
|
assert args.min_lr <= args.lr |
|
if args.save is not None: |
|
assert args.save_interval is not None |
|
|
|
if args.fp16_lm_cross_entropy: |
|
assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.' |
|
if args.fp32_residual_connection: |
|
assert args.fp16 or args.bf16, \ |
|
'residual connection in fp32 only supported when using fp16 or bf16.' |
|
|
|
if args.weight_decay_incr_style == 'constant': |
|
assert args.start_weight_decay is None |
|
assert args.end_weight_decay is None |
|
args.start_weight_decay = args.weight_decay |
|
args.end_weight_decay = args.weight_decay |
|
else: |
|
assert args.start_weight_decay is not None |
|
assert args.end_weight_decay is not None |
|
|
|
TORCH_MAJOR = int(torch.__version__.split('.')[0]) |
|
TORCH_MINOR = int(torch.__version__.split('.')[1]) |
|
|
|
if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11): |
|
args.no_persist_layer_norm = True |
|
if args.rank == 0: |
|
print('Persistent fused layer norm kernel is supported from ' |
|
'pytorch v1.11 (nvidia pytorch container paired with v1.11). ' |
|
'Defaulting to no_persist_layer_norm=True') |
|
|
|
|
|
if args.distribute_saved_activations: |
|
assert args.tensor_model_parallel_size > 1, 'can distribute ' \ |
|
'recomputed activations only across tensor model ' \ |
|
'parallel groups' |
|
assert args.recompute_granularity == 'full', \ |
|
'distributed recompute activations is only '\ |
|
'application to full recompute granularity' |
|
assert args.recompute_method is not None, \ |
|
'for distributed recompute activations to work you '\ |
|
'need to use a recompute method ' |
|
assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \ |
|
'distributed recompute activations are supported for pytorch ' \ |
|
'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \ |
|
'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR) |
|
|
|
|
|
if args.fp8_e4m3 or args.fp8_hybrid: |
|
assert args.transformer_impl == 'transformer_engine', \ |
|
'transformer-engine required for fp8 training and inference' |
|
|
|
assert not (args.fp8_e4m3 and args.fp8_hybrid), \ |
|
'cannot train with both fp8 e4m3 and hybrid formatting' |
|
|
|
if args.fp16: |
|
assert args.transformer_impl == 'local', \ |
|
'transformer-engine not yet approved for fp16 training and inference' |
|
|
|
if args.recompute_granularity == 'selective': |
|
assert args.recompute_method is None, \ |
|
'recompute method is not yet supported for ' \ |
|
'selective recomputing granularity' |
|
|
|
|
|
if not args.parallel_attn: |
|
assert not args.parallel_layernorm, "parallel_layernorm only implemented with parallel_attention" |
|
|
|
|
|
|
|
|
|
if args.tensor_model_parallel_size == 1: |
|
args.sequence_parallel = False |
|
|
|
|
|
|
|
if args.sequence_parallel: |
|
args.async_tensor_model_parallel_allreduce = False |
|
|
|
if os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') and os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') != "1": |
|
if args.sequence_parallel: |
|
raise RuntimeError( |
|
"Using sequence parallelism requires setting the environment variable " |
|
"CUDA_DEVICE_MAX_CONNECTIONS to 1") |
|
if args.async_tensor_model_parallel_allreduce: |
|
raise RuntimeError( |
|
"Using async gradient all reduce requires setting the environment " |
|
"variable CUDA_DEVICE_MAX_CONNECTIONS to 1") |
|
_print_args(args) |
|
return args |
|
|
|
|
|
def _print_args(args): |
|
"""Print arguments.""" |
|
if args.rank == 0: |
|
print('------------------------ arguments ------------------------', |
|
flush=True) |
|
str_list = [] |
|
for arg in vars(args): |
|
dots = '.' * (48 - len(arg)) |
|
str_list.append(' {} {} {}'.format(arg, dots, getattr(args, arg))) |
|
for arg in sorted(str_list, key=lambda x: x.lower()): |
|
print(arg, flush=True) |
|
print('-------------------- end of arguments ---------------------', |
|
flush=True) |
|
|
|
|
|
def _check_arg_is_not_none(args, arg): |
|
assert getattr(args, arg) is not None, '{} argument is None'.format(arg) |
|
|
|
|
|
def _add_transformer_engine_args(parser): |
|
group = parser.add_argument_group(title='Transformer-Engine') |
|
group.add_argument('--fp8_e4m3', action='store_true', |
|
help='E4M3 TransformerLayer', dest='fp8_e4m3') |
|
group.add_argument('--fp8_hybrid', action='store_true', |
|
help='Hybrid FP8 TransformerLayer') |
|
group.add_argument('--no_fp8_wgrad', action='store_false', |
|
help='Execute wgrad in higher precision even for FP8 runs', dest='fp8_wgrad') |
|
group.add_argument('--fp8_margin', type=int, default=0, |
|
help='Scaling margin for fp8', dest='fp8_margin') |
|
group.add_argument('--fp8_interval', type=int, default=1, |
|
help='Scaling update interval for fp8', dest='fp8_interval') |
|
group.add_argument('--transformer_impl', default='local', |
|
choices=['local', 'transformer_engine'], |
|
help='Which Transformer implementation to use.') |
|
group.add_argument('--fp8_amax_history_len', type=int, default=1, |
|
help='Number of steps for which amax history is recorded per tensor') |
|
group.add_argument('--fp8_amax_compute_algo', default='most_recent', |
|
choices=['most_recent', 'max'], |
|
help='Algorithm for computing amax from history') |
|
return parser |
|
|
|
|
|
def _add_inference_args(parser): |
|
group = parser.add_argument_group(title='inference') |
|
group.add_argument('--inference_batch_times_seqlen_threshold', |
|
type=int, default=512, |
|
help='During inference, if batch-size times ' |
|
'sequence-length is smaller than this threshold ' |
|
'then we will not use pipelining, otherwise we will.') |
|
group.add_argument('--max_tokens_to_oom', |
|
type=int, default=12000, |
|
help='Maximum number of tokens during inference' |
|
'tokens here is # in prompt + # to generate' |
|
'Allows us to throw an error before OOM crashes server') |
|
return parser |
|
|
|
|
|
def _add_network_size_args(parser): |
|
group = parser.add_argument_group(title='network size') |
|
group.add_argument('--num_layers', type=int, default=None, |
|
help='Number of transformer layers.') |
|
group.add_argument('--encoder_num_layers', type=int, default=None, |
|
help='Number of encoder transformer layers.') |
|
group.add_argument('--decoder_num_layers', type=int, default=None, |
|
help='Number of decoder transformer layers.') |
|
group.add_argument('--hidden_size', type=int, default=None, |
|
help='Tansformer hidden size.') |
|
group.add_argument('--ffn_hidden_size', type=int, default=None, |
|
help='Transformer Feed-Forward Network hidden size. ' |
|
'This is set to 4*hidden_size if not provided') |
|
group.add_argument('--num_attention_heads', type=int, default=None, |
|
help='Number of transformer attention heads.') |
|
group.add_argument('--num_attention_heads_kv', type=int, default=None, |
|
help='Number of transformer attention heads for the keys and values.') |
|
group.add_argument('--kv_channels', type=int, default=None, |
|
help='Projection weights dimension in multi-head ' |
|
'attention. This is set to ' |
|
' args.hidden_size // args.num_attention_heads ' |
|
'if not provided.') |
|
group.add_argument('--max_position_embeddings', type=int, default=None, |
|
help='Maximum number of position embeddings to use. ' |
|
'This is the size of position embedding.') |
|
group.add_argument('--make_vocab_size_divisible_by', type=int, default=128, |
|
help='Pad the vocab size to be divisible by this value.' |
|
'This is added for computational efficieny reasons.') |
|
group.add_argument('--layernorm_epsilon', type=float, default=1e-5, |
|
help='Layer norm epsilon.') |
|
group.add_argument('--apply_residual_connection_post_layernorm', |
|
action='store_true', |
|
help='If set, use original BERT residual connection ' |
|
'ordering.') |
|
group.add_argument('--use_bias', action='store_true', |
|
help='If set then use bias.') |
|
|
|
group.add_argument('--use_rms_norm', |
|
action='store_true', |
|
help='If set, use RMSNorm instead of LayerNorm.') |
|
group.add_argument('--use_post_ln', |
|
action='store_true', |
|
help='If set, use Post-LN transformer (in the notation of https://sh-tsang.medium.com/review-pre-ln-transformer-on-layer-normalization-in-the-transformer-architecture-b6c91a89e9ab).') |
|
group.add_argument('--onnx_safe', type=bool, required=False, |
|
help='Use workarounds for known problems with ' |
|
'Torch ONNX exporter') |
|
|
|
group.add_argument('--glu_activation', type=str, |
|
choices=megatron.model.glu_activations.GLU_ACTIVATIONS.keys(), |
|
help='GLU activations to use.' |
|
) |
|
group.add_argument('--position_embedding_type', type=lambda x: PositionEmbeddingType[x], |
|
choices=list(PositionEmbeddingType), |
|
default=PositionEmbeddingType.absolute, |
|
help='Define position embedding type ("absolute" | "rotary"). "absolute" by default.') |
|
group.add_argument('--rope_scaling_factor', type=float, default=1.0, |
|
help='Set the linear RoPE scaling factor for sequence interpolation.') |
|
group.add_argument('--rope_theta', type=float, default=10000.0, |
|
help='Set RoPE theta base (llama/llama2: 1e4, codellama: 1e6).') |
|
|
|
group.add_argument("--parallel_attn", action="store_true", |
|
help="Whether to use parallel mlp and attn computation with a single layernorm") |
|
group.add_argument("--parallel_layernorm", action="store_true", |
|
help="Whether to use a dedicated layernorm for the mlp in the attention") |
|
|
|
group.add_argument("--no_tie_embed_logits", action="store_false", dest="tie_embed_logits", |
|
help=("If set, the weights of the word embedding and lm_head " |
|
"are not tied")) |
|
group.add_argument("--sliding_window_size", type=int, default=None, |
|
help="Whether to use sliding window attention for Mistral. Default is None, which means no sliding window attention.") |
|
return parser |
|
|
|
|
|
def _add_logging_args(parser): |
|
group = parser.add_argument_group(title='logging') |
|
group.add_argument('--log_params_norm', action='store_true', |
|
help='If set, calculate and log parameters norm.') |
|
group.add_argument('--log_num_zeros_in_grad', action='store_true', |
|
help='If set, calculate and log the number of zeros in gradient.') |
|
group.add_argument('--timing_log_level', type=int, |
|
default=0, choices=range(0, 3), |
|
help='Granularity level to measure and report timing. ' |
|
' 0: report only iteration time and make sure timing ' |
|
' does not introduce extra overhead.' |
|
' 1: report timing for operations that are executed ' |
|
' very limited times (basically once) during ' |
|
' each iteration (such as gradient all-reduce) ' |
|
' 2: report timing for operations that migh be ' |
|
' executed numerous times during each iteration. ' |
|
'Note that setting the level to 1 or 2 might ' |
|
'cause increase in iteration time.') |
|
group.add_argument('--barrier_with_L1_time', action='store_false', |
|
help='If not set, use barrier with level 1 time ' |
|
'measurements. Note that this is up to the user ' |
|
'to make sure calling barrier with their timers ' |
|
'will not result in hangs. This can happen if for ' |
|
'example the user adds a level 1 timer that is not ' |
|
'called by all ranks.') |
|
group.add_argument('--timing_log_option', type=str, default='minmax', |
|
choices=['max', 'minmax', 'all'], |
|
help='Options for logging timing:' |
|
' max: report the max timing across all ranks' |
|
' minmax: report min and max timings across all ranks' |
|
' all: report timings of all ranks.') |
|
group.add_argument('--tensorboard_log_interval', type=int, default=1, |
|
help='Report to tensorboard interval.') |
|
group.add_argument('--tensorboard_queue_size', type=int, default=1000, |
|
help='Size of the tensorboard queue for pending events ' |
|
'and summaries before one of the ‘add’ calls forces a ' |
|
'flush to disk.') |
|
group.add_argument('--log_timers_to_tensorboard', action='store_true', |
|
help='If set, write timers to tensorboard.') |
|
group.add_argument('--log_batch_size_to_tensorboard', action='store_true', |
|
help='If set, write batch-size to tensorboard.') |
|
group.add_argument('--log_validation_ppl_to_tensorboard', |
|
action='store_true', |
|
help='If set, write validation perplexity to ' |
|
'tensorboard.') |
|
group.add_argument('--log_memory_to_tensorboard', |
|
action='store_true', |
|
help='Enable memory logging to tensorboard.') |
|
group.add_argument('--log_world_size_to_tensorboard', |
|
action='store_true', |
|
help='Enable world size logging to tensorboard.') |
|
group.add_argument('--wandb_logger', |
|
action='store_true', |
|
help='Enable logging to Weights & Biases instead of tensorboard.') |
|
group.add_argument('--wandb_project', type=str, default=None, |
|
help='Project name for Weights & Biases.') |
|
group.add_argument('--wandb_entity', type=str, default="meditron", |
|
help='Entity/team name for Weights & Biases.') |
|
group.add_argument('--wandb_id',type=str,default=None, |
|
help="Unique ID to identify this run, alternatively can set `WANDB_RUN_ID`.") |
|
group.add_argument('--wandb_resume',action="store_true", |
|
help="If set, we resume logging for the id given instead of launching a new run (errors if id given and resume=False).") |
|
group.add_argument("--wandb_api_key",type=str,default=None, |
|
help="API key for Weights & Biases, needs to be set if not set in environment variable `WANDB_API_KEY`.") |
|
group.add_argument("--metrics", default=[], nargs="+", choices=list(METRICS) + ["all"], |
|
help="Metrics to report when logging") |
|
return parser |
|
|
|
|
|
def _add_regularization_args(parser): |
|
group = parser.add_argument_group(title='regularization') |
|
group.add_argument('--attention_dropout', type=float, default=0.1, |
|
help='Post attention dropout probability.') |
|
group.add_argument('--hidden_dropout', type=float, default=0.1, |
|
help='Dropout probability for hidden state transformer.') |
|
|
|
group.add_argument('--lima_dropout', action='store_true', |
|
help='Linearly raise the hidden_dropout probability from 0.0 at the first layer to the full hidden_dropout value at the last layer.') |
|
group.add_argument('--weight_decay', type=float, default=0.01, |
|
help='Weight decay coefficient for L2 regularization.') |
|
group.add_argument('--start_weight_decay', type=float, |
|
help='Initial weight decay coefficient for L2 regularization.') |
|
group.add_argument('--end_weight_decay', type=float, |
|
help='End of run weight decay coefficient for L2 regularization.') |
|
group.add_argument('--weight_decay_incr_style', type=str, default='constant', |
|
choices=['constant', 'linear', 'cosine'], |
|
help='Weight decay increment function.') |
|
group.add_argument('--clip_grad', type=float, default=1.0, |
|
help='Gradient clipping based on global L2 norm.') |
|
group.add_argument('--adam_beta1', type=float, default=0.9, |
|
help='First coefficient for computing running averages ' |
|
'of gradient and its square') |
|
group.add_argument('--adam_beta2', type=float, default=0.999, |
|
help='Second coefficient for computing running averages ' |
|
'of gradient and its square') |
|
group.add_argument('--adam_eps', type=float, default=1e-08, |
|
help='Term added to the denominator to improve' |
|
'numerical stability') |
|
group.add_argument('--sgd_momentum', type=float, default=0.9, |
|
help='Momentum factor for sgd') |
|
|
|
return parser |
|
|
|
|
|
def _add_training_args(parser): |
|
group = parser.add_argument_group(title='training') |
|
group.add_argument('--micro_batch_size', type=int, default=None, |
|
help='Batch size per model instance (local batch size). ' |
|
'Global batch size is local batch size times data ' |
|
'parallel size times number of micro batches.') |
|
group.add_argument('--global_batch_size', type=int, default=None, |
|
help='Training batch size. If set, it should be a ' |
|
'multiple of micro_batch_size times data-parallel-size. ' |
|
'If this value is None, then ' |
|
'use micro_batch_size * data-parallel-size as the ' |
|
'global batch size. This choice will result in 1 for ' |
|
'number of micro-batches.') |
|
group.add_argument('--rampup_batch_size', nargs='*', default=None, |
|
help='Batch size ramp up with the following values:' |
|
' --rampup_batch_size <start batch size> ' |
|
' <batch size incerement> ' |
|
' <ramp-up samples> ' |
|
'For example:' |
|
' --rampup_batch_size 16 8 300000 \ ' |
|
' --global_batch_size 1024' |
|
'will start with global batch size 16 and over ' |
|
' (1024 - 16) / 8 = 126 intervals will increase' |
|
'the batch size linearly to 1024. In each interval' |
|
'we will use approximately 300000 / 126 = 2380 samples.') |
|
group.add_argument('--recompute_activations', action='store_true', |
|
help='recompute activation to allow for training ' |
|
'with larger models, sequences, and batch sizes.') |
|
group.add_argument('--recompute_granularity', type=str, default=None, |
|
choices=['full', 'selective'], |
|
help='Checkpoint activations to allow for training ' |
|
'with larger models, sequences, and batch sizes. ' |
|
'It is supported at two granularities 1) full: ' |
|
'whole transformer layer is recomputed, ' |
|
'2) selective: core attention part of the transformer ' |
|
'layer is recomputed.') |
|
group.add_argument('--distribute_saved_activations', |
|
action='store_true', |
|
help='If set, distribute recomputed activations ' |
|
'across model parallel group.') |
|
group.add_argument('--recompute_method', type=str, default=None, |
|
choices=['uniform', 'block'], |
|
help='1) uniform: uniformly divide the total number of ' |
|
'Transformer layers and recompute the input activation of ' |
|
'each divided chunk at specified granularity, ' |
|
'2) recompute the input activations of only a set number of ' |
|
'individual Transformer layers per pipeline stage and do the ' |
|
'rest without any recomputing at specified granularity' |
|
'default) do not apply activations recompute to any layers') |
|
group.add_argument('--recompute_num_layers', type=int, default=1, |
|
help='1) uniform: the number of Transformer layers in each ' |
|
'uniformly divided recompute unit, ' |
|
'2) block: the number of individual Transformer layers ' |
|
'to recompute within each pipeline stage.') |
|
group.add_argument('--train_iters', type=int, default=None, |
|
help='Total number of iterations to train over all ' |
|
'training runs. Note that either train_iters or ' |
|
'train_samples should be provided.') |
|
group.add_argument('--skip_iters', type=int, nargs='*', default=[], |
|
help=('One or more iterations to ignore. Neither the forward ' |
|
'nor backward pass will be computed for this iterations')) |
|
group.add_argument('--train_samples', type=int, default=None, |
|
help='Total number of samples to train over all ' |
|
'training runs. Note that either train_iters or ' |
|
'train_samples should be provided.') |
|
group.add_argument('--log_interval', type=int, default=100, |
|
help='Report loss and timing interval.') |
|
group.add_argument('--exit_interval', type=int, default=None, |
|
help='Exit the program after the iteration is divisible ' |
|
'by this value.') |
|
group.add_argument('--exit_duration_in_mins', type=int, default=None, |
|
help='Exit the program after this many minutes.') |
|
group.add_argument('--exit_signal_handler', action='store_true', |
|
help='Dynamically save the checkpoint and shutdown the ' |
|
'training if SIGTERM is received') |
|
group.add_argument('--tensorboard_dir', type=str, default=None, |
|
help='Write TensorBoard logs to this directory.') |
|
group.add_argument('--no_masked_softmax_fusion', |
|
action='store_false', |
|
help='Disable fusion of query_key_value scaling, ' |
|
'masking, and softmax.', |
|
dest='masked_softmax_fusion') |
|
group.add_argument('--no_bias_gelu_fusion', action='store_false', |
|
help='Disable bias and gelu fusion.', |
|
dest='bias_gelu_fusion') |
|
group.add_argument('--no_bias_dropout_fusion', action='store_false', |
|
help='Disable bias and dropout fusion.', |
|
dest='bias_dropout_fusion') |
|
group.add_argument('--use_flash_attn', action='store_true', |
|
help='use FlashAttention implementation of attention. ' |
|
'https://arxiv.org/abs/2205.14135') |
|
group.add_argument('--optimizer', type=str, default='adam', |
|
choices=['adam', 'sgd'], |
|
help='Optimizer function') |
|
group.add_argument('--dataloader_type', type=str, default=None, |
|
choices=['single', 'cyclic'], |
|
help='Single pass vs multiple pass data loader') |
|
group.add_argument('--no_async_tensor_model_parallel_allreduce', |
|
action='store_false', |
|
help='Disable asynchronous execution of ' |
|
'tensor-model-parallel all-reduce with weight ' |
|
'gradient compuation of a column-linear layer.', |
|
dest='async_tensor_model_parallel_allreduce') |
|
group.add_argument('--no_persist_layer_norm', action='store_true', |
|
help='Disable using persistent fused layer norm kernel. ' |
|
'This kernel supports only a set of hidden sizes. Please ' |
|
'check persist_ln_hidden_sizes if your hidden ' |
|
'size is supported.') |
|
group.add_argument('--sequence_parallel', action='store_true', |
|
help='Enable sequence parallel optimization.') |
|
group.add_argument('--no_gradient_accumulation_fusion', |
|
action='store_false', |
|
help='Disable fusing gradient accumulation to weight ' |
|
'gradient computation of linear layers', |
|
dest='gradient_accumulation_fusion') |
|
group.add_argument('--freeze_layers', action='store_true', |
|
help='Freeze layers besides embedding ones.') |
|
return parser |
|
|
|
|
|
def _add_initialization_args(parser): |
|
group = parser.add_argument_group(title='initialization') |
|
group.add_argument('--seed', type=int, default=1234, |
|
help='Random seed used for python, numpy, ' |
|
'pytorch, and cuda.') |
|
group.add_argument('--data_parallel_random_init', action='store_true', |
|
help='Enable random initialization of params ' |
|
'across data parallel ranks') |
|
group.add_argument('--init_method_std', type=float, default=0.02, |
|
help='Standard deviation of the zero mean normal ' |
|
'distribution used for weight initialization.') |
|
group.add_argument('--init_method_xavier_uniform', action='store_true', |
|
help='Enable Xavier uniform parameter initialization') |
|
return parser |
|
|
|
|
|
def _add_learning_rate_args(parser): |
|
group = parser.add_argument_group(title='learning rate') |
|
group.add_argument('--lr', type=float, default=None, |
|
help='Initial learning rate. Depending on decay style ' |
|
'and initial warmup, the learing rate at each ' |
|
'iteration would be different.') |
|
group.add_argument('--lr_decay_style', type=str, default='linear', |
|
choices=['constant', 'linear', 'cosine', 'inverse-square-root'], |
|
help='Learning rate decay function.') |
|
group.add_argument('--lr_decay_iters', type=int, default=None, |
|
help='number of iterations to decay learning rate over,' |
|
' If None defaults to `--train_iters`') |
|
group.add_argument('--lr_decay_samples', type=int, default=None, |
|
help='number of samples to decay learning rate over,' |
|
' If None defaults to `--train_samples`') |
|
group.add_argument('--lr_warmup_fraction', type=float, default=None, |
|
help='fraction of lr-warmup-(iters/samples) to use ' |
|
'for warmup (as a float)') |
|
group.add_argument('--lr_warmup_iters', type=int, default=0, |
|
help='number of iterations to linearly warmup ' |
|
'learning rate over.') |
|
group.add_argument('--lr_warmup_samples', type=int, default=0, |
|
help='number of samples to linearly warmup ' |
|
'learning rate over.') |
|
group.add_argument('--min_lr', type=float, default=0.0, |
|
help='Minumum value for learning rate. The scheduler' |
|
'clip values below this threshold.') |
|
group.add_argument('--override_opt_param_scheduler', action='store_true', |
|
help='Reset the values of the scheduler (learning rate,' |
|
'warmup iterations, minimum learning rate, maximum ' |
|
'number of iterations, and decay style from input ' |
|
'arguments and ignore values from checkpoints. Note' |
|
'that all the above values will be reset.') |
|
group.add_argument('--use_checkpoint_opt_param_scheduler', action='store_true', |
|
help='Use checkpoint to set the values of the scheduler ' |
|
'(learning rate, warmup iterations, minimum learning ' |
|
'rate, maximum number of iterations, and decay style ' |
|
'from checkpoint and ignore input arguments.') |
|
group.add_argument('--annealing', action='store_true',) |
|
return parser |
|
|
|
|
|
def _add_checkpointing_args(parser): |
|
group = parser.add_argument_group(title='checkpointing') |
|
|
|
group.add_argument('--save', type=str, default=None, |
|
help='Output directory to save checkpoints to.') |
|
group.add_argument('--save_interval', type=int, default=None, |
|
help='Number of iterations between checkpoint saves.') |
|
group.add_argument('--no_save_optim', action='store_true', default=None, |
|
help='Do not save current optimizer.') |
|
group.add_argument('--no_save_rng', action='store_true', default=None, |
|
help='Do not save current rng state.') |
|
group.add_argument('--load', type=str, default=None, |
|
help='Directory containing a model checkpoint.') |
|
group.add_argument('--no_load_optim', action='store_true', default=None, |
|
help='Do not load optimizer when loading checkpoint.') |
|
group.add_argument('--no_load_rng', action='store_true', default=None, |
|
help='Do not load rng state when loading checkpoint.') |
|
group.add_argument('--finetune', action='store_true', |
|
help='Load model for finetuning. Do not load optimizer ' |
|
'or rng state from checkpoint and set iteration to 0. ' |
|
'Assumed when loading a release checkpoint.') |
|
group.add_argument('--no_initialization', action='store_false', |
|
help='Do not perform initialization when building model, ' |
|
'can reduce startup time when definitely loading from a ' |
|
'checkpoint', |
|
dest='perform_initialization') |
|
group.add_argument('--use_checkpoint_args', action='store_true', |
|
help='Override any command line arguments with arguments ' |
|
'from the checkpoint') |
|
return parser |
|
|
|
|
|
def _add_mixed_precision_args(parser): |
|
group = parser.add_argument_group(title='mixed precision') |
|
group.add_argument('--fp16', action='store_true', |
|
help='Run model in fp16 mode.') |
|
group.add_argument('--bf16', action='store_true', |
|
help='Run model in bfloat16 mode.') |
|
group.add_argument('--loss_scale', type=float, default=None, |
|
help='Static loss scaling, positive power of 2 ' |
|
'values can improve fp16 convergence. If None, dynamic' |
|
'loss scaling is used.') |
|
group.add_argument('--initial_loss_scale', type=float, default=2**32, |
|
help='Initial loss scale for dynamic loss scaling.') |
|
group.add_argument('--min_loss_scale', type=float, default=1.0, |
|
help='Minimum loss scale for dynamic loss scale.') |
|
group.add_argument('--loss_scale_window', type=float, default=1000, |
|
help='Window over which to raise/lower dynamic scale.') |
|
group.add_argument('--hysteresis', type=int, default=2, |
|
help='hysteresis for dynamic loss scaling') |
|
group.add_argument('--fp32_residual_connection', action='store_true', |
|
help='Move residual connections to fp32.') |
|
group.add_argument('--no_query_key_layer_scaling', action='store_false', |
|
help='Do not scale Q * K^T by 1 / layer-number.', |
|
dest='apply_query_key_layer_scaling') |
|
group.add_argument('--attention_softmax_in_fp32', action='store_true', |
|
help='Run attention masking and softmax in fp32. ' |
|
'This flag is ignored unless ' |
|
'--no_query_key_layer_scaling is specified.') |
|
group.add_argument('--accumulate_allreduce_grads_in_fp32', |
|
action='store_true', |
|
help='Gradient accumulation and all-reduce in fp32.') |
|
group.add_argument('--fp16_lm_cross_entropy', |
|
action='store_true', |
|
help='Move the cross entropy unreduced loss calculation' |
|
'for lm head to fp16.') |
|
return parser |
|
|
|
|
|
def _add_distributed_args(parser): |
|
group = parser.add_argument_group(title='distributed') |
|
group.add_argument('--tensor_model_parallel_size', type=int, default=1, |
|
help='Degree of tensor model parallelism.') |
|
group.add_argument('--pipeline_model_parallel_size', type=int, default=1, |
|
help='Degree of pipeline model parallelism.') |
|
group.add_argument('--pipeline_model_parallel_split_rank', |
|
type=int, default=None, |
|
help='Rank where encoder and decoder should be split.') |
|
group.add_argument('--num_layers_per_virtual_pipeline_stage', type=int, default=None, |
|
help='Number of layers per virtual pipeline stage') |
|
group.add_argument('--distributed_backend', default='nccl', |
|
choices=['nccl', 'gloo'], |
|
help='Which backend to use for distributed training.') |
|
group.add_argument('--DDP_impl', default='local', |
|
choices=['local', 'torch'], |
|
help='which DistributedDataParallel implementation ' |
|
'to use.') |
|
group.add_argument('--no_contiguous_buffers_in_local_ddp', |
|
action='store_false', help='If set, dont use ' |
|
'contiguous buffer in local DDP.', |
|
dest='use_contiguous_buffers_in_local_ddp') |
|
group.add_argument('--no_scatter_gather_tensors_in_pipeline', |
|
action='store_false', |
|
help='Use scatter/gather to optimize communication of tensors in pipeline', |
|
dest='scatter_gather_tensors_in_pipeline') |
|
group.add_argument('--use_ring_exchange_p2p', action='store_true', |
|
default=False, help='If set, use custom-built ring exchange ' |
|
'for p2p communications. Note that this option will require ' |
|
'a custom built image that support ring-exchange p2p.') |
|
group.add_argument('--local_rank', type=int, default=None, |
|
help='local rank passed from distributed launcher.') |
|
group.add_argument('--use_cpu_initialization', action='store_true', |
|
default=None, help='If set, affine parallel weights ' |
|
'initialization uses CPU') |
|
group.add_argument('--empty_unused_memory_level', default=0, type=int, |
|
choices=[0, 1, 2], |
|
help='Call torch.cuda.empty_cache() each iteration ' |
|
'(training and eval), to reduce fragmentation.' |
|
'0=off, 1=moderate, 2=aggressive.') |
|
group.add_argument('--standalone_embedding_stage', action='store_true', |
|
default=False, help='If set, *input* embedding layer ' |
|
'is placed on its own pipeline stage, without any ' |
|
'transformer layers. (For T5, this flag currently only ' |
|
'affects the encoder embedding.)') |
|
group.add_argument('--use_distributed_optimizer', action='store_true', |
|
help='Use distributed optimizer.') |
|
return parser |
|
|
|
|
|
def _add_validation_args(parser): |
|
group = parser.add_argument_group(title='validation') |
|
group.add_argument('--eval_iters', type=int, default=100, |
|
help='Number of iterations to run for evaluation' |
|
'validation/test for.') |
|
group.add_argument('--eval_interval', type=int, default=1000, |
|
help='Interval between running evaluation on ' |
|
'validation set.') |
|
return parser |
|
|
|
|
|
def _add_data_args(parser): |
|
group = parser.add_argument_group(title='data and dataloader') |
|
group.add_argument('--data_path', nargs='*', default=None, |
|
help='Path to the training dataset. Accepted format:' |
|
'1) a single data path, 2) multiple datasets in the' |
|
'form: dataset1-weight dataset1-path dataset2-weight ' |
|
'dataset2-path ... It is used with --split when a ' |
|
'single dataset used for all three: train, valid ' |
|
'and test. It is exclusive to the other ' |
|
'--*-data_path args') |
|
group.add_argument('--split', type=str, default='969, 30, 1', |
|
help='Comma-separated list of proportions for training,' |
|
' validation, and test split. For example the split ' |
|
'`90,5,5` will use 90%% of data for training, 5%% for ' |
|
'validation and 5%% for test.') |
|
group.add_argument('--train_data_path', nargs='*', default=None, |
|
help='Path to the training dataset. Accepted format:' |
|
'1) a single data path, 2) multiple datasets in the' |
|
'form: dataset1-weight dataset1-path dataset2-weight ' |
|
'dataset2-path ...') |
|
group.add_argument('--valid_data_path', nargs='*', default=None, |
|
help='Path to the validation dataset. Accepted format:' |
|
'1) a single data path, 2) multiple datasets in the' |
|
'form: dataset1-weight dataset1-path dataset2-weight ' |
|
'dataset2-path ...') |
|
group.add_argument('--test_data_path', nargs='*', default=None, |
|
help='Path to the test dataset. Accepted format:' |
|
'1) a single data path, 2) multiple datasets in the' |
|
'form: dataset1-weight dataset1-path dataset2-weight ' |
|
'dataset2-path ...') |
|
group.add_argument('--vocab_file', type=str, default=None, |
|
help='Path to the vocab file.') |
|
group.add_argument('--merge_file', type=str, default=None, |
|
help='Path to the BPE merge file.') |
|
group.add_argument('--vocab_extra_ids', type=int, default=0, |
|
help='Number of additional vocabulary tokens. ' |
|
'They are used for span masking in the T5 model') |
|
group.add_argument('--vocab_extra_ids_list', type=str, default=None, |
|
help='comma separated list of special vocab ids to add to the tokenizer') |
|
group.add_argument('--seq_length', type=int, default=None, |
|
help='Maximum sequence length to process.') |
|
group.add_argument('--variable_seq_lengths', action='store_true', default=None, |
|
help='Enable variable sequence lengths.') |
|
group.add_argument('--scalar_loss_mask', type=float, default=0.0, |
|
help=('Instruction-tuning argument: Scalar to multiply the ' |
|
'loss of the "masked out" tokens (usually the user ' |
|
'tokens, not assistant ones). Set to zero (default) ' |
|
'to completely remove the loss of said tokens')) |
|
group.add_argument('--encoder_seq_length', type=int, default=None, |
|
help='Maximum encoder sequence length to process.' |
|
'This should be exclusive of --seq_length') |
|
group.add_argument('--decoder_seq_length', type=int, default=None, |
|
help="Maximum decoder sequence length to process.") |
|
group.add_argument('--retriever_seq_length', type=int, default=256, |
|
help='Maximum sequence length for the biencoder model ' |
|
'for retriever') |
|
group.add_argument('--sample_rate', type=float, default=1.0, |
|
help='sample rate for training data. Supposed to be 0 ' |
|
' < sample_rate < 1') |
|
group.add_argument('--mask_prob', type=float, default=0.15, |
|
help='Probability of replacing a token with mask.') |
|
group.add_argument('--short_seq_prob', type=float, default=0.1, |
|
help='Probability of producing a short sequence.') |
|
group.add_argument('--mmap_warmup', action='store_true', |
|
help='Warm up mmap files.') |
|
group.add_argument('--num_workers', type=int, default=2, |
|
help="Dataloader number of workers.") |
|
group.add_argument('--tokenizer_type', type=str, |
|
default=None, |
|
choices=['BertWordPieceLowerCase', |
|
'BertWordPieceCase', |
|
'GPT2BPETokenizer', |
|
'SentencePieceTokenizer', |
|
'PretrainedFromHF', |
|
'FalconTokenizer'], |
|
help='What type of tokenizer to use.') |
|
group.add_argument('--tokenizer_model', type=str, default=None, |
|
help='Sentencepiece tokenizer model.') |
|
group.add_argument("--no_new_tokens", action="store_false", dest="new_tokens", |
|
help=("Do not add special tokens (e.g. CLS, MASK, etc) " |
|
"in the sentenciepiece tokenizer")) |
|
group.add_argument('--data_impl', type=str, default='infer', |
|
choices=['lazy', 'cached', 'mmap', 'infer'], |
|
help='Implementation of indexed datasets.') |
|
group.add_argument('--reset_position_ids', action='store_true', |
|
help='Reset posistion ids after end-of-document token.') |
|
group.add_argument('--reset_attention_mask', action='store_true', |
|
help='Reset self attention maske after ' |
|
'end-of-document token.') |
|
group.add_argument('--eod_mask_loss', action='store_true', |
|
help='Mask loss for the end of document tokens.') |
|
return parser |
|
|
|
|
|
def _add_autoresume_args(parser): |
|
group = parser.add_argument_group(title='autoresume') |
|
group.add_argument('--adlr_autoresume', action='store_true', |
|
help='Enable autoresume on adlr cluster.') |
|
group.add_argument('--adlr_autoresume_interval', type=int, default=1000, |
|
help='Intervals over which check for autoresume' |
|
'termination signal') |
|
return parser |
|
|
|
|
|
def _add_biencoder_args(parser): |
|
group = parser.add_argument_group(title='biencoder') |
|
|
|
group.add_argument('--ict_head_size', type=int, default=None, |
|
help='Size of block embeddings to be used in ICT and ' |
|
'REALM (paper default: 128)') |
|
group.add_argument('--biencoder_projection_dim', type=int, default=0, |
|
help='Size of projection head used in biencoder') |
|
group.add_argument('--biencoder_shared_query_context_model', action='store_true', |
|
help='Whether to share the parameters of the query ' |
|
'and context models or not') |
|
|
|
group.add_argument('--ict_load', type=str, default=None, |
|
help='Directory containing an ICTBertModel checkpoint') |
|
group.add_argument('--bert_load', type=str, default=None, |
|
help='Directory containing an BertModel checkpoint ' |
|
'(needed to start ICT and REALM)') |
|
|
|
|
|
group.add_argument('--titles_data_path', type=str, default=None, |
|
help='Path to titles dataset used for ICT') |
|
group.add_argument('--query_in_block_prob', type=float, default=0.1, |
|
help='Probability of keeping query in block for ' |
|
'ICT dataset') |
|
group.add_argument('--use_one_sent_docs', action='store_true', |
|
help='Whether to use one sentence documents in ICT') |
|
group.add_argument('--evidence_data_path', type=str, default=None, |
|
help='Path to Wikipedia Evidence frm DPR paper') |
|
|
|
|
|
group.add_argument('--retriever_report_topk_accuracies', nargs='+', type=int, |
|
default=[], help="Which top-k accuracies to report " |
|
"(e.g. '1 5 20')") |
|
group.add_argument('--retriever_score_scaling', action='store_true', |
|
help='Whether to scale retriever scores by inverse ' |
|
'square root of hidden size') |
|
|
|
|
|
group.add_argument('--block_data_path', type=str, default=None, |
|
help='Where to save/load BlockData to/from') |
|
group.add_argument('--embedding_path', type=str, default=None, |
|
help='Where to save/load Open-Retrieval Embedding' |
|
' data to/from') |
|
|
|
|
|
group.add_argument('--indexer_batch_size', type=int, default=128, |
|
help='How large of batches to use when doing indexing ' |
|
'jobs') |
|
group.add_argument('--indexer_log_interval', type=int, default=1000, |
|
help='After how many batches should the indexer ' |
|
'report progress') |
|
return parser |
|
|
|
|
|
def _add_vision_args(parser): |
|
group = parser.add_argument_group(title="vision") |
|
|
|
|
|
group.add_argument('--num_classes', type=int, default=1000, |
|
help='num of classes in vision classificaiton task') |
|
group.add_argument('--img_h', type=int, default=224, |
|
help='Image height for vision classification task') |
|
group.add_argument('--img_w', type=int, default=224, |
|
help='Image height for vision classification task') |
|
group.add_argument('--num_channels', type=int, default=3, |
|
help='Number of channels in input image data') |
|
group.add_argument('--patch_dim', type=int, default=16, |
|
help='patch dimension') |
|
group.add_argument('--classes_fraction', type=float, default=1.0, |
|
help='training with fraction of classes.') |
|
group.add_argument('--data_per_class_fraction', type=float, default=1.0, |
|
help='training with fraction of data per class.') |
|
group.add_argument('--no_data_sharding', action='store_false', |
|
help='Disable data sharding.', |
|
dest='data_sharding') |
|
group.add_argument('--head_lr_mult', type=float, default=1.0, |
|
help='learning rate multiplier for head during finetuning') |
|
|
|
|
|
group.add_argument('--iter_per_epoch', type=int, default=1250, |
|
help='iterations per epoch') |
|
group.add_argument('--dino_local_img_size', type=int, default=96, |
|
help='Image size for vision classification task') |
|
group.add_argument('--dino_local_crops_number', type=int, default=10, |
|
help='Number of local crops') |
|
group.add_argument('--dino_head_hidden_size', type=int, default=2048, |
|
help='Hidden dimension size in dino head') |
|
group.add_argument('--dino_bottleneck_size', type=int, default=256, |
|
help='Bottle neck dimension in dino head ') |
|
group.add_argument('--dino_freeze_last_layer', type=float, default=1, |
|
help='Freezing last layer weights') |
|
group.add_argument('--dino_norm_last_layer', action='store_true', |
|
help='Disable Norm in last layer.') |
|
group.add_argument('--dino_warmup_teacher_temp', type=float, default=0.04, |
|
help='warump teacher temperature') |
|
group.add_argument('--dino_teacher_temp', type=float, default=0.07, |
|
help='teacher temperature') |
|
group.add_argument('--dino_warmup_teacher_temp_epochs', type=int, default=30, |
|
help='warmup teacher temperaure epochs') |
|
return parser |
|
|