sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Megatron arguments."""
import argparse
import os
import torch
import megatron
from megatron.metrics import METRICS
from megatron.model.enums import PositionEmbeddingType
def build_base_parser():
parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
allow_abbrev=False)
# Standard arguments.
parser = _add_network_size_args(parser)
parser = _add_regularization_args(parser)
parser = _add_training_args(parser)
parser = _add_initialization_args(parser)
parser = _add_learning_rate_args(parser)
parser = _add_checkpointing_args(parser)
parser = _add_mixed_precision_args(parser)
parser = _add_distributed_args(parser)
parser = _add_validation_args(parser)
parser = _add_data_args(parser)
parser = _add_autoresume_args(parser)
parser = _add_biencoder_args(parser)
parser = _add_vision_args(parser)
parser = _add_logging_args(parser)
parser = _add_inference_args(parser)
parser = _add_transformer_engine_args(parser)
return parser
def parse_args(extra_args_provider=None):
"""Parse all arguments."""
parser = build_base_parser()
# Custom arguments.
if extra_args_provider is not None:
parser = extra_args_provider(parser)
args = parser.parse_args()
# Args from environment
args.rank = int(os.getenv('RANK', '0'))
args.world_size = int(os.getenv("WORLD_SIZE", '1'))
return args
def validate_args(args, defaults={}):
# Tensor model parallel size.
args.tensor_model_parallel_size = min(
args.tensor_model_parallel_size, args.world_size)
assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
' ({}) is not divisible by tensor model parallel size ({})'.format(
args.world_size, args.tensor_model_parallel_size)
# Pipeline model parallel size.
args.pipeline_model_parallel_size = min(
args.pipeline_model_parallel_size,
(args.world_size // args.tensor_model_parallel_size))
args.transformer_pipeline_model_parallel_size = (
args.pipeline_model_parallel_size - 1
if args.standalone_embedding_stage else
args.pipeline_model_parallel_size
)
# Checks.
model_parallel_size = args.pipeline_model_parallel_size * \
args.tensor_model_parallel_size
assert args.world_size % model_parallel_size == 0, 'world size is not'\
' divisible by tensor parallel size ({}) times pipeline parallel ' \
'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
args.pipeline_model_parallel_size)
args.data_parallel_size = args.world_size // model_parallel_size
if args.rank == 0:
print('using world size: {}, data-parallel-size: {}, '
'tensor-model-parallel size: {}, '
'pipeline-model-parallel size: {} '.format(
args.world_size, args.data_parallel_size,
args.tensor_model_parallel_size,
args.pipeline_model_parallel_size), flush=True)
if args.pipeline_model_parallel_size > 1:
if args.pipeline_model_parallel_split_rank is not None:
assert args.pipeline_model_parallel_split_rank < \
args.pipeline_model_parallel_size, 'split rank needs'\
' to be less than pipeline model parallel size ({})'.format(
args.pipeline_model_parallel_size)
if args.recompute_activations:
args.recompute_granularity = 'selective'
del args.recompute_activations
if args.metrics == ["all"]:
args.metrics = list(METRICS)
# Set input defaults.
for key in defaults:
# For default to be valid, it should not be provided in the
# arguments that are passed to the program. We check this by
# ensuring the arg is set to None.
if getattr(args, key) is not None:
if args.rank == 0:
print('WARNING: overriding default arguments for {key}:{v} \
with {key}:{v2}'.format(key=key, v=defaults[key],
v2=getattr(args, key)),
flush=True)
else:
setattr(args, key, defaults[key])
# Batch size.
assert args.micro_batch_size is not None
assert args.micro_batch_size > 0
if args.global_batch_size is None:
args.global_batch_size = args.micro_batch_size * args.data_parallel_size
if args.rank == 0:
print('setting global batch size to {}'.format(
args.global_batch_size), flush=True)
assert args.global_batch_size > 0
if args.num_layers_per_virtual_pipeline_stage is not None:
assert args.pipeline_model_parallel_size > 2, \
'pipeline-model-parallel size should be greater than 2 with ' \
'interleaved schedule'
assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
'number of layers is not divisible by number of layers per virtual ' \
'pipeline stage'
args.virtual_pipeline_model_parallel_size = \
(args.num_layers // args.transformer_pipeline_model_parallel_size) // \
args.num_layers_per_virtual_pipeline_stage
else:
args.virtual_pipeline_model_parallel_size = None
# Parameters dtype.
args.params_dtype = torch.float
if args.fp16:
assert not args.bf16
args.params_dtype = torch.half
if args.bf16:
assert not args.fp16
args.params_dtype = torch.bfloat16
# bfloat16 requires gradient accumulation and all-reduce to
# be done in fp32.
if not args.accumulate_allreduce_grads_in_fp32:
args.accumulate_allreduce_grads_in_fp32 = True
if args.rank == 0:
print('accumulate and all-reduce gradients in fp32 for '
'bfloat16 data type.', flush=True)
if args.rank == 0:
print('using {} for parameters ...'.format(args.params_dtype),
flush=True)
# If we do accumulation and all-reduces in fp32, we need to have local DDP
# and we should make sure use-contiguous-buffers-in-local-ddp is not off.
if args.accumulate_allreduce_grads_in_fp32:
assert args.DDP_impl == 'local'
assert args.use_contiguous_buffers_in_local_ddp
# If we use the distributed optimizer, we need to have local DDP
# and we should make sure use-contiguous-buffers-in-local-ddp is on.
if args.use_distributed_optimizer:
assert args.DDP_impl == 'local'
assert args.use_contiguous_buffers_in_local_ddp
# For torch DDP, we do not use contiguous buffer
if args.DDP_impl == 'torch':
args.use_contiguous_buffers_in_local_ddp = False
if args.dataloader_type is None:
args.dataloader_type = 'single'
# Consumed tokens.
args.consumed_train_samples = 0
args.consumed_valid_samples = 0
# Support for variable sequence lengths across batches/microbatches.
# set it if the dataloader supports generation of variable sequence lengths
# across batches/microbatches. Due to additional communication overhead
# during pipeline parallelism, it should not be set if sequence length
# is constant during training.
if args.variable_seq_lengths is None:
args.variable_seq_lengths = False
# Iteration-based training.
if args.train_iters:
# If we use iteration-based training, make sure the
# sample-based options are off.
assert args.train_samples is None, \
'expected iteration-based training'
assert args.lr_decay_samples is None, \
'expected iteration-based learning rate decay'
assert args.lr_warmup_samples == 0, \
'expected iteration-based learning rate warmup'
assert args.rampup_batch_size is None, \
'expected no batch-size rampup for iteration-based training'
if args.lr_warmup_fraction is not None:
assert args.lr_warmup_iters == 0, \
'can only specify one of lr_warmup_fraction and lr_warmup_iters'
# Sample-based training.
if args.train_samples:
# If we use sample-based training, make sure the
# iteration-based options are off.
assert args.train_iters is None, \
'expected sample-based training'
assert args.lr_decay_iters is None, \
'expected sample-based learning rate decay'
assert args.lr_warmup_iters == 0, \
'expected sample-based learning rate warmup'
if args.lr_warmup_fraction is not None:
assert args.lr_warmup_samples == 0, \
'can only specify one of lr_warmup_fraction ' \
'and lr_warmup_samples'
if args.num_layers is not None:
assert args.encoder_num_layers is None, \
'cannot have both num_layers and encoder_num_layers specified'
args.encoder_num_layers = args.num_layers
else:
assert args.encoder_num_layers is not None, \
'either num_layers or encoder_num_layers should be specified'
args.num_layers = args.encoder_num_layers
# Check required arguments.
# required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
# 'max_position_embeddings']
required_args = ['num_layers', 'hidden_size', 'num_attention_heads']
for req_arg in required_args:
_check_arg_is_not_none(args, req_arg)
# Checks.
if args.ffn_hidden_size is None:
args.ffn_hidden_size = 4 * args.hidden_size
if args.kv_channels is None:
assert args.hidden_size % args.num_attention_heads == 0
args.kv_channels = args.hidden_size // args.num_attention_heads
if args.num_attention_heads_kv is None:
args.num_attention_heads_kv = args.num_attention_heads
if args.seq_length is not None:
assert args.encoder_seq_length is None
args.encoder_seq_length = args.seq_length
else:
assert args.encoder_seq_length is not None
args.seq_length = args.encoder_seq_length
if not isinstance(args.position_embedding_type, PositionEmbeddingType):
args.position_embedding_type = PositionEmbeddingType[args.position_embedding_type]
if args.position_embedding_type in [PositionEmbeddingType.absolute, PositionEmbeddingType.rotary]:
assert args.max_position_embeddings is not None
if args.seq_length is not None:
assert args.max_position_embeddings >= args.seq_length
if args.decoder_seq_length is not None:
assert args.max_position_embeddings >= args.decoder_seq_length
assert args.rope_scaling_factor >= 1, 'rope_scaling_factor must be >= 1'
else:
assert args.max_position_embeddings is None
if args.lr is not None:
assert args.min_lr <= args.lr
if args.save is not None:
assert args.save_interval is not None
# Mixed precision checks.
if args.fp16_lm_cross_entropy:
assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
if args.fp32_residual_connection:
assert args.fp16 or args.bf16, \
'residual connection in fp32 only supported when using fp16 or bf16.'
if args.weight_decay_incr_style == 'constant':
assert args.start_weight_decay is None
assert args.end_weight_decay is None
args.start_weight_decay = args.weight_decay
args.end_weight_decay = args.weight_decay
else:
assert args.start_weight_decay is not None
assert args.end_weight_decay is not None
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
# Persistent fused layer norm.
if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
args.no_persist_layer_norm = True
if args.rank == 0:
print('Persistent fused layer norm kernel is supported from '
'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
'Defaulting to no_persist_layer_norm=True')
# Activation recomputing.
if args.distribute_saved_activations:
assert args.tensor_model_parallel_size > 1, 'can distribute ' \
'recomputed activations only across tensor model ' \
'parallel groups'
assert args.recompute_granularity == 'full', \
'distributed recompute activations is only '\
'application to full recompute granularity'
assert args.recompute_method is not None, \
'for distributed recompute activations to work you '\
'need to use a recompute method '
assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
'distributed recompute activations are supported for pytorch ' \
'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)
# Tranformer-Engine/FP8 related checking
if args.fp8_e4m3 or args.fp8_hybrid:
assert args.transformer_impl == 'transformer_engine', \
'transformer-engine required for fp8 training and inference'
assert not (args.fp8_e4m3 and args.fp8_hybrid), \
'cannot train with both fp8 e4m3 and hybrid formatting'
if args.fp16:
assert args.transformer_impl == 'local', \
'transformer-engine not yet approved for fp16 training and inference'
if args.recompute_granularity == 'selective':
assert args.recompute_method is None, \
'recompute method is not yet supported for ' \
'selective recomputing granularity'
# Parallel attention.
if not args.parallel_attn:
assert not args.parallel_layernorm, "parallel_layernorm only implemented with parallel_attention"
# disable sequence parallelism when tp=1
# to avoid change in numerics when
# sequence_parallelism is enabled.
if args.tensor_model_parallel_size == 1:
args.sequence_parallel = False
# disable async_tensor_model_parallel_allreduce when
# model parallel memory optimization is enabled
if args.sequence_parallel:
args.async_tensor_model_parallel_allreduce = False
if os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') and os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') != "1":
if args.sequence_parallel:
raise RuntimeError(
"Using sequence parallelism requires setting the environment variable "
"CUDA_DEVICE_MAX_CONNECTIONS to 1")
if args.async_tensor_model_parallel_allreduce:
raise RuntimeError(
"Using async gradient all reduce requires setting the environment "
"variable CUDA_DEVICE_MAX_CONNECTIONS to 1")
_print_args(args)
return args
def _print_args(args):
"""Print arguments."""
if args.rank == 0:
print('------------------------ arguments ------------------------',
flush=True)
str_list = []
for arg in vars(args):
dots = '.' * (48 - len(arg))
str_list.append(' {} {} {}'.format(arg, dots, getattr(args, arg)))
for arg in sorted(str_list, key=lambda x: x.lower()):
print(arg, flush=True)
print('-------------------- end of arguments ---------------------',
flush=True)
def _check_arg_is_not_none(args, arg):
assert getattr(args, arg) is not None, '{} argument is None'.format(arg)
def _add_transformer_engine_args(parser):
group = parser.add_argument_group(title='Transformer-Engine')
group.add_argument('--fp8_e4m3', action='store_true',
help='E4M3 TransformerLayer', dest='fp8_e4m3')
group.add_argument('--fp8_hybrid', action='store_true',
help='Hybrid FP8 TransformerLayer')
group.add_argument('--no_fp8_wgrad', action='store_false',
help='Execute wgrad in higher precision even for FP8 runs', dest='fp8_wgrad')
group.add_argument('--fp8_margin', type=int, default=0,
help='Scaling margin for fp8', dest='fp8_margin')
group.add_argument('--fp8_interval', type=int, default=1,
help='Scaling update interval for fp8', dest='fp8_interval')
group.add_argument('--transformer_impl', default='local',
choices=['local', 'transformer_engine'],
help='Which Transformer implementation to use.')
group.add_argument('--fp8_amax_history_len', type=int, default=1,
help='Number of steps for which amax history is recorded per tensor')
group.add_argument('--fp8_amax_compute_algo', default='most_recent',
choices=['most_recent', 'max'],
help='Algorithm for computing amax from history')
return parser
def _add_inference_args(parser):
group = parser.add_argument_group(title='inference')
group.add_argument('--inference_batch_times_seqlen_threshold',
type=int, default=512,
help='During inference, if batch-size times '
'sequence-length is smaller than this threshold '
'then we will not use pipelining, otherwise we will.')
group.add_argument('--max_tokens_to_oom',
type=int, default=12000,
help='Maximum number of tokens during inference'
'tokens here is # in prompt + # to generate'
'Allows us to throw an error before OOM crashes server')
return parser
def _add_network_size_args(parser):
group = parser.add_argument_group(title='network size')
group.add_argument('--num_layers', type=int, default=None,
help='Number of transformer layers.')
group.add_argument('--encoder_num_layers', type=int, default=None,
help='Number of encoder transformer layers.')
group.add_argument('--decoder_num_layers', type=int, default=None,
help='Number of decoder transformer layers.')
group.add_argument('--hidden_size', type=int, default=None,
help='Tansformer hidden size.')
group.add_argument('--ffn_hidden_size', type=int, default=None,
help='Transformer Feed-Forward Network hidden size. '
'This is set to 4*hidden_size if not provided')
group.add_argument('--num_attention_heads', type=int, default=None,
help='Number of transformer attention heads.')
group.add_argument('--num_attention_heads_kv', type=int, default=None,
help='Number of transformer attention heads for the keys and values.')
group.add_argument('--kv_channels', type=int, default=None,
help='Projection weights dimension in multi-head '
'attention. This is set to '
' args.hidden_size // args.num_attention_heads '
'if not provided.')
group.add_argument('--max_position_embeddings', type=int, default=None,
help='Maximum number of position embeddings to use. '
'This is the size of position embedding.')
group.add_argument('--make_vocab_size_divisible_by', type=int, default=128,
help='Pad the vocab size to be divisible by this value.'
'This is added for computational efficieny reasons.')
group.add_argument('--layernorm_epsilon', type=float, default=1e-5,
help='Layer norm epsilon.')
group.add_argument('--apply_residual_connection_post_layernorm',
action='store_true',
help='If set, use original BERT residual connection '
'ordering.')
group.add_argument('--use_bias', action='store_true',
help='If set then use bias.') # Added during hackathon
# Extracted from: https://github.com/facebookresearch/llama/blob/main/llama/model.py
group.add_argument('--use_rms_norm',
action='store_true',
help='If set, use RMSNorm instead of LayerNorm.')
group.add_argument('--use_post_ln',
action='store_true',
help='If set, use Post-LN transformer (in the notation of https://sh-tsang.medium.com/review-pre-ln-transformer-on-layer-normalization-in-the-transformer-architecture-b6c91a89e9ab).')
group.add_argument('--onnx_safe', type=bool, required=False,
help='Use workarounds for known problems with '
'Torch ONNX exporter')
# Extracted from: https://github.com/bigscience-workshop/Megatron-DeepSpeed
group.add_argument('--glu_activation', type=str,
choices=megatron.model.glu_activations.GLU_ACTIVATIONS.keys(),
help='GLU activations to use.'
)
group.add_argument('--position_embedding_type', type=lambda x: PositionEmbeddingType[x],
choices=list(PositionEmbeddingType),
default=PositionEmbeddingType.absolute,
help='Define position embedding type ("absolute" | "rotary"). "absolute" by default.')
group.add_argument('--rope_scaling_factor', type=float, default=1.0,
help='Set the linear RoPE scaling factor for sequence interpolation.')
group.add_argument('--rope_theta', type=float, default=10000.0,
help='Set RoPE theta base (llama/llama2: 1e4, codellama: 1e6).')
# Added mainly for Falcon
group.add_argument("--parallel_attn", action="store_true",
help="Whether to use parallel mlp and attn computation with a single layernorm")
group.add_argument("--parallel_layernorm", action="store_true",
help="Whether to use a dedicated layernorm for the mlp in the attention")
# Added mainly for Llama
group.add_argument("--no_tie_embed_logits", action="store_false", dest="tie_embed_logits",
help=("If set, the weights of the word embedding and lm_head "
"are not tied"))
group.add_argument("--sliding_window_size", type=int, default=None,
help="Whether to use sliding window attention for Mistral. Default is None, which means no sliding window attention.")
return parser
def _add_logging_args(parser):
group = parser.add_argument_group(title='logging')
group.add_argument('--log_params_norm', action='store_true',
help='If set, calculate and log parameters norm.')
group.add_argument('--log_num_zeros_in_grad', action='store_true',
help='If set, calculate and log the number of zeros in gradient.')
group.add_argument('--timing_log_level', type=int,
default=0, choices=range(0, 3),
help='Granularity level to measure and report timing. '
' 0: report only iteration time and make sure timing '
' does not introduce extra overhead.'
' 1: report timing for operations that are executed '
' very limited times (basically once) during '
' each iteration (such as gradient all-reduce) '
' 2: report timing for operations that migh be '
' executed numerous times during each iteration. '
'Note that setting the level to 1 or 2 might '
'cause increase in iteration time.')
group.add_argument('--barrier_with_L1_time', action='store_false',
help='If not set, use barrier with level 1 time '
'measurements. Note that this is up to the user '
'to make sure calling barrier with their timers '
'will not result in hangs. This can happen if for '
'example the user adds a level 1 timer that is not '
'called by all ranks.')
group.add_argument('--timing_log_option', type=str, default='minmax',
choices=['max', 'minmax', 'all'],
help='Options for logging timing:'
' max: report the max timing across all ranks'
' minmax: report min and max timings across all ranks'
' all: report timings of all ranks.')
group.add_argument('--tensorboard_log_interval', type=int, default=1,
help='Report to tensorboard interval.')
group.add_argument('--tensorboard_queue_size', type=int, default=1000,
help='Size of the tensorboard queue for pending events '
'and summaries before one of the ‘add’ calls forces a '
'flush to disk.')
group.add_argument('--log_timers_to_tensorboard', action='store_true',
help='If set, write timers to tensorboard.')
group.add_argument('--log_batch_size_to_tensorboard', action='store_true',
help='If set, write batch-size to tensorboard.')
group.add_argument('--log_validation_ppl_to_tensorboard',
action='store_true',
help='If set, write validation perplexity to '
'tensorboard.')
group.add_argument('--log_memory_to_tensorboard',
action='store_true',
help='Enable memory logging to tensorboard.')
group.add_argument('--log_world_size_to_tensorboard',
action='store_true',
help='Enable world size logging to tensorboard.')
group.add_argument('--wandb_logger',
action='store_true',
help='Enable logging to Weights & Biases instead of tensorboard.')
group.add_argument('--wandb_project', type=str, default=None,
help='Project name for Weights & Biases.')
group.add_argument('--wandb_entity', type=str, default="meditron",
help='Entity/team name for Weights & Biases.')
group.add_argument('--wandb_id',type=str,default=None,
help="Unique ID to identify this run, alternatively can set `WANDB_RUN_ID`.")
group.add_argument('--wandb_resume',action="store_true",
help="If set, we resume logging for the id given instead of launching a new run (errors if id given and resume=False).")
group.add_argument("--wandb_api_key",type=str,default=None,
help="API key for Weights & Biases, needs to be set if not set in environment variable `WANDB_API_KEY`.")
group.add_argument("--metrics", default=[], nargs="+", choices=list(METRICS) + ["all"],
help="Metrics to report when logging")
return parser
def _add_regularization_args(parser):
group = parser.add_argument_group(title='regularization')
group.add_argument('--attention_dropout', type=float, default=0.1,
help='Post attention dropout probability.')
group.add_argument('--hidden_dropout', type=float, default=0.1,
help='Dropout probability for hidden state transformer.')
# see "LIMA: Less Is More for Alignment", Zhou et al 2023, https://arxiv.org/abs/2305.11206
group.add_argument('--lima_dropout', action='store_true',
help='Linearly raise the hidden_dropout probability from 0.0 at the first layer to the full hidden_dropout value at the last layer.')
group.add_argument('--weight_decay', type=float, default=0.01,
help='Weight decay coefficient for L2 regularization.')
group.add_argument('--start_weight_decay', type=float,
help='Initial weight decay coefficient for L2 regularization.')
group.add_argument('--end_weight_decay', type=float,
help='End of run weight decay coefficient for L2 regularization.')
group.add_argument('--weight_decay_incr_style', type=str, default='constant',
choices=['constant', 'linear', 'cosine'],
help='Weight decay increment function.')
group.add_argument('--clip_grad', type=float, default=1.0,
help='Gradient clipping based on global L2 norm.')
group.add_argument('--adam_beta1', type=float, default=0.9,
help='First coefficient for computing running averages '
'of gradient and its square')
group.add_argument('--adam_beta2', type=float, default=0.999,
help='Second coefficient for computing running averages '
'of gradient and its square')
group.add_argument('--adam_eps', type=float, default=1e-08,
help='Term added to the denominator to improve'
'numerical stability')
group.add_argument('--sgd_momentum', type=float, default=0.9,
help='Momentum factor for sgd')
return parser
def _add_training_args(parser):
group = parser.add_argument_group(title='training')
group.add_argument('--micro_batch_size', type=int, default=None,
help='Batch size per model instance (local batch size). '
'Global batch size is local batch size times data '
'parallel size times number of micro batches.')
group.add_argument('--global_batch_size', type=int, default=None,
help='Training batch size. If set, it should be a '
'multiple of micro_batch_size times data-parallel-size. '
'If this value is None, then '
'use micro_batch_size * data-parallel-size as the '
'global batch size. This choice will result in 1 for '
'number of micro-batches.')
group.add_argument('--rampup_batch_size', nargs='*', default=None,
help='Batch size ramp up with the following values:'
' --rampup_batch_size <start batch size> '
' <batch size incerement> '
' <ramp-up samples> '
'For example:'
' --rampup_batch_size 16 8 300000 \ '
' --global_batch_size 1024'
'will start with global batch size 16 and over '
' (1024 - 16) / 8 = 126 intervals will increase'
'the batch size linearly to 1024. In each interval'
'we will use approximately 300000 / 126 = 2380 samples.')
group.add_argument('--recompute_activations', action='store_true',
help='recompute activation to allow for training '
'with larger models, sequences, and batch sizes.')
group.add_argument('--recompute_granularity', type=str, default=None,
choices=['full', 'selective'],
help='Checkpoint activations to allow for training '
'with larger models, sequences, and batch sizes. '
'It is supported at two granularities 1) full: '
'whole transformer layer is recomputed, '
'2) selective: core attention part of the transformer '
'layer is recomputed.')
group.add_argument('--distribute_saved_activations',
action='store_true',
help='If set, distribute recomputed activations '
'across model parallel group.')
group.add_argument('--recompute_method', type=str, default=None,
choices=['uniform', 'block'],
help='1) uniform: uniformly divide the total number of '
'Transformer layers and recompute the input activation of '
'each divided chunk at specified granularity, '
'2) recompute the input activations of only a set number of '
'individual Transformer layers per pipeline stage and do the '
'rest without any recomputing at specified granularity'
'default) do not apply activations recompute to any layers')
group.add_argument('--recompute_num_layers', type=int, default=1,
help='1) uniform: the number of Transformer layers in each '
'uniformly divided recompute unit, '
'2) block: the number of individual Transformer layers '
'to recompute within each pipeline stage.')
group.add_argument('--train_iters', type=int, default=None,
help='Total number of iterations to train over all '
'training runs. Note that either train_iters or '
'train_samples should be provided.')
group.add_argument('--skip_iters', type=int, nargs='*', default=[],
help=('One or more iterations to ignore. Neither the forward '
'nor backward pass will be computed for this iterations'))
group.add_argument('--train_samples', type=int, default=None,
help='Total number of samples to train over all '
'training runs. Note that either train_iters or '
'train_samples should be provided.')
group.add_argument('--log_interval', type=int, default=100,
help='Report loss and timing interval.')
group.add_argument('--exit_interval', type=int, default=None,
help='Exit the program after the iteration is divisible '
'by this value.')
group.add_argument('--exit_duration_in_mins', type=int, default=None,
help='Exit the program after this many minutes.')
group.add_argument('--exit_signal_handler', action='store_true',
help='Dynamically save the checkpoint and shutdown the '
'training if SIGTERM is received')
group.add_argument('--tensorboard_dir', type=str, default=None,
help='Write TensorBoard logs to this directory.')
group.add_argument('--no_masked_softmax_fusion',
action='store_false',
help='Disable fusion of query_key_value scaling, '
'masking, and softmax.',
dest='masked_softmax_fusion')
group.add_argument('--no_bias_gelu_fusion', action='store_false',
help='Disable bias and gelu fusion.',
dest='bias_gelu_fusion')
group.add_argument('--no_bias_dropout_fusion', action='store_false',
help='Disable bias and dropout fusion.',
dest='bias_dropout_fusion')
group.add_argument('--use_flash_attn', action='store_true',
help='use FlashAttention implementation of attention. '
'https://arxiv.org/abs/2205.14135')
group.add_argument('--optimizer', type=str, default='adam',
choices=['adam', 'sgd'],
help='Optimizer function')
group.add_argument('--dataloader_type', type=str, default=None,
choices=['single', 'cyclic'],
help='Single pass vs multiple pass data loader')
group.add_argument('--no_async_tensor_model_parallel_allreduce',
action='store_false',
help='Disable asynchronous execution of '
'tensor-model-parallel all-reduce with weight '
'gradient compuation of a column-linear layer.',
dest='async_tensor_model_parallel_allreduce')
group.add_argument('--no_persist_layer_norm', action='store_true',
help='Disable using persistent fused layer norm kernel. '
'This kernel supports only a set of hidden sizes. Please '
'check persist_ln_hidden_sizes if your hidden '
'size is supported.')
group.add_argument('--sequence_parallel', action='store_true',
help='Enable sequence parallel optimization.')
group.add_argument('--no_gradient_accumulation_fusion',
action='store_false',
help='Disable fusing gradient accumulation to weight '
'gradient computation of linear layers',
dest='gradient_accumulation_fusion')
group.add_argument('--freeze_layers', action='store_true',
help='Freeze layers besides embedding ones.')
return parser
def _add_initialization_args(parser):
group = parser.add_argument_group(title='initialization')
group.add_argument('--seed', type=int, default=1234,
help='Random seed used for python, numpy, '
'pytorch, and cuda.')
group.add_argument('--data_parallel_random_init', action='store_true',
help='Enable random initialization of params '
'across data parallel ranks')
group.add_argument('--init_method_std', type=float, default=0.02,
help='Standard deviation of the zero mean normal '
'distribution used for weight initialization.')
group.add_argument('--init_method_xavier_uniform', action='store_true',
help='Enable Xavier uniform parameter initialization')
return parser
def _add_learning_rate_args(parser):
group = parser.add_argument_group(title='learning rate')
group.add_argument('--lr', type=float, default=None,
help='Initial learning rate. Depending on decay style '
'and initial warmup, the learing rate at each '
'iteration would be different.')
group.add_argument('--lr_decay_style', type=str, default='linear',
choices=['constant', 'linear', 'cosine', 'inverse-square-root'],
help='Learning rate decay function.')
group.add_argument('--lr_decay_iters', type=int, default=None,
help='number of iterations to decay learning rate over,'
' If None defaults to `--train_iters`')
group.add_argument('--lr_decay_samples', type=int, default=None,
help='number of samples to decay learning rate over,'
' If None defaults to `--train_samples`')
group.add_argument('--lr_warmup_fraction', type=float, default=None,
help='fraction of lr-warmup-(iters/samples) to use '
'for warmup (as a float)')
group.add_argument('--lr_warmup_iters', type=int, default=0,
help='number of iterations to linearly warmup '
'learning rate over.')
group.add_argument('--lr_warmup_samples', type=int, default=0,
help='number of samples to linearly warmup '
'learning rate over.')
group.add_argument('--min_lr', type=float, default=0.0,
help='Minumum value for learning rate. The scheduler'
'clip values below this threshold.')
group.add_argument('--override_opt_param_scheduler', action='store_true',
help='Reset the values of the scheduler (learning rate,'
'warmup iterations, minimum learning rate, maximum '
'number of iterations, and decay style from input '
'arguments and ignore values from checkpoints. Note'
'that all the above values will be reset.')
group.add_argument('--use_checkpoint_opt_param_scheduler', action='store_true',
help='Use checkpoint to set the values of the scheduler '
'(learning rate, warmup iterations, minimum learning '
'rate, maximum number of iterations, and decay style '
'from checkpoint and ignore input arguments.')
group.add_argument('--annealing', action='store_true',)
return parser
def _add_checkpointing_args(parser):
group = parser.add_argument_group(title='checkpointing')
group.add_argument('--save', type=str, default=None,
help='Output directory to save checkpoints to.')
group.add_argument('--save_interval', type=int, default=None,
help='Number of iterations between checkpoint saves.')
group.add_argument('--no_save_optim', action='store_true', default=None,
help='Do not save current optimizer.')
group.add_argument('--no_save_rng', action='store_true', default=None,
help='Do not save current rng state.')
group.add_argument('--load', type=str, default=None,
help='Directory containing a model checkpoint.')
group.add_argument('--no_load_optim', action='store_true', default=None,
help='Do not load optimizer when loading checkpoint.')
group.add_argument('--no_load_rng', action='store_true', default=None,
help='Do not load rng state when loading checkpoint.')
group.add_argument('--finetune', action='store_true',
help='Load model for finetuning. Do not load optimizer '
'or rng state from checkpoint and set iteration to 0. '
'Assumed when loading a release checkpoint.')
group.add_argument('--no_initialization', action='store_false',
help='Do not perform initialization when building model, '
'can reduce startup time when definitely loading from a '
'checkpoint',
dest='perform_initialization')
group.add_argument('--use_checkpoint_args', action='store_true',
help='Override any command line arguments with arguments '
'from the checkpoint')
return parser
def _add_mixed_precision_args(parser):
group = parser.add_argument_group(title='mixed precision')
group.add_argument('--fp16', action='store_true',
help='Run model in fp16 mode.')
group.add_argument('--bf16', action='store_true',
help='Run model in bfloat16 mode.')
group.add_argument('--loss_scale', type=float, default=None,
help='Static loss scaling, positive power of 2 '
'values can improve fp16 convergence. If None, dynamic'
'loss scaling is used.')
group.add_argument('--initial_loss_scale', type=float, default=2**32,
help='Initial loss scale for dynamic loss scaling.')
group.add_argument('--min_loss_scale', type=float, default=1.0,
help='Minimum loss scale for dynamic loss scale.')
group.add_argument('--loss_scale_window', type=float, default=1000,
help='Window over which to raise/lower dynamic scale.')
group.add_argument('--hysteresis', type=int, default=2,
help='hysteresis for dynamic loss scaling')
group.add_argument('--fp32_residual_connection', action='store_true',
help='Move residual connections to fp32.')
group.add_argument('--no_query_key_layer_scaling', action='store_false',
help='Do not scale Q * K^T by 1 / layer-number.',
dest='apply_query_key_layer_scaling')
group.add_argument('--attention_softmax_in_fp32', action='store_true',
help='Run attention masking and softmax in fp32. '
'This flag is ignored unless '
'--no_query_key_layer_scaling is specified.')
group.add_argument('--accumulate_allreduce_grads_in_fp32',
action='store_true',
help='Gradient accumulation and all-reduce in fp32.')
group.add_argument('--fp16_lm_cross_entropy',
action='store_true',
help='Move the cross entropy unreduced loss calculation'
'for lm head to fp16.')
return parser
def _add_distributed_args(parser):
group = parser.add_argument_group(title='distributed')
group.add_argument('--tensor_model_parallel_size', type=int, default=1,
help='Degree of tensor model parallelism.')
group.add_argument('--pipeline_model_parallel_size', type=int, default=1,
help='Degree of pipeline model parallelism.')
group.add_argument('--pipeline_model_parallel_split_rank',
type=int, default=None,
help='Rank where encoder and decoder should be split.')
group.add_argument('--num_layers_per_virtual_pipeline_stage', type=int, default=None,
help='Number of layers per virtual pipeline stage')
group.add_argument('--distributed_backend', default='nccl',
choices=['nccl', 'gloo'],
help='Which backend to use for distributed training.')
group.add_argument('--DDP_impl', default='local',
choices=['local', 'torch'],
help='which DistributedDataParallel implementation '
'to use.')
group.add_argument('--no_contiguous_buffers_in_local_ddp',
action='store_false', help='If set, dont use '
'contiguous buffer in local DDP.',
dest='use_contiguous_buffers_in_local_ddp')
group.add_argument('--no_scatter_gather_tensors_in_pipeline',
action='store_false',
help='Use scatter/gather to optimize communication of tensors in pipeline',
dest='scatter_gather_tensors_in_pipeline')
group.add_argument('--use_ring_exchange_p2p', action='store_true',
default=False, help='If set, use custom-built ring exchange '
'for p2p communications. Note that this option will require '
'a custom built image that support ring-exchange p2p.')
group.add_argument('--local_rank', type=int, default=None,
help='local rank passed from distributed launcher.')
group.add_argument('--use_cpu_initialization', action='store_true',
default=None, help='If set, affine parallel weights '
'initialization uses CPU')
group.add_argument('--empty_unused_memory_level', default=0, type=int,
choices=[0, 1, 2],
help='Call torch.cuda.empty_cache() each iteration '
'(training and eval), to reduce fragmentation.'
'0=off, 1=moderate, 2=aggressive.')
group.add_argument('--standalone_embedding_stage', action='store_true',
default=False, help='If set, *input* embedding layer '
'is placed on its own pipeline stage, without any '
'transformer layers. (For T5, this flag currently only '
'affects the encoder embedding.)')
group.add_argument('--use_distributed_optimizer', action='store_true',
help='Use distributed optimizer.')
return parser
def _add_validation_args(parser):
group = parser.add_argument_group(title='validation')
group.add_argument('--eval_iters', type=int, default=100,
help='Number of iterations to run for evaluation'
'validation/test for.')
group.add_argument('--eval_interval', type=int, default=1000,
help='Interval between running evaluation on '
'validation set.')
return parser
def _add_data_args(parser):
group = parser.add_argument_group(title='data and dataloader')
group.add_argument('--data_path', nargs='*', default=None,
help='Path to the training dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-weight dataset1-path dataset2-weight '
'dataset2-path ... It is used with --split when a '
'single dataset used for all three: train, valid '
'and test. It is exclusive to the other '
'--*-data_path args')
group.add_argument('--split', type=str, default='969, 30, 1',
help='Comma-separated list of proportions for training,'
' validation, and test split. For example the split '
'`90,5,5` will use 90%% of data for training, 5%% for '
'validation and 5%% for test.')
group.add_argument('--train_data_path', nargs='*', default=None,
help='Path to the training dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-weight dataset1-path dataset2-weight '
'dataset2-path ...')
group.add_argument('--valid_data_path', nargs='*', default=None,
help='Path to the validation dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-weight dataset1-path dataset2-weight '
'dataset2-path ...')
group.add_argument('--test_data_path', nargs='*', default=None,
help='Path to the test dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-weight dataset1-path dataset2-weight '
'dataset2-path ...')
group.add_argument('--vocab_file', type=str, default=None,
help='Path to the vocab file.')
group.add_argument('--merge_file', type=str, default=None,
help='Path to the BPE merge file.')
group.add_argument('--vocab_extra_ids', type=int, default=0,
help='Number of additional vocabulary tokens. '
'They are used for span masking in the T5 model')
group.add_argument('--vocab_extra_ids_list', type=str, default=None,
help='comma separated list of special vocab ids to add to the tokenizer')
group.add_argument('--seq_length', type=int, default=None,
help='Maximum sequence length to process.')
group.add_argument('--variable_seq_lengths', action='store_true', default=None,
help='Enable variable sequence lengths.')
group.add_argument('--scalar_loss_mask', type=float, default=0.0,
help=('Instruction-tuning argument: Scalar to multiply the '
'loss of the "masked out" tokens (usually the user '
'tokens, not assistant ones). Set to zero (default) '
'to completely remove the loss of said tokens'))
group.add_argument('--encoder_seq_length', type=int, default=None,
help='Maximum encoder sequence length to process.'
'This should be exclusive of --seq_length')
group.add_argument('--decoder_seq_length', type=int, default=None,
help="Maximum decoder sequence length to process.")
group.add_argument('--retriever_seq_length', type=int, default=256,
help='Maximum sequence length for the biencoder model '
'for retriever')
group.add_argument('--sample_rate', type=float, default=1.0,
help='sample rate for training data. Supposed to be 0 '
' < sample_rate < 1')
group.add_argument('--mask_prob', type=float, default=0.15,
help='Probability of replacing a token with mask.')
group.add_argument('--short_seq_prob', type=float, default=0.1,
help='Probability of producing a short sequence.')
group.add_argument('--mmap_warmup', action='store_true',
help='Warm up mmap files.')
group.add_argument('--num_workers', type=int, default=2,
help="Dataloader number of workers.")
group.add_argument('--tokenizer_type', type=str,
default=None,
choices=['BertWordPieceLowerCase',
'BertWordPieceCase',
'GPT2BPETokenizer',
'SentencePieceTokenizer',
'PretrainedFromHF',
'FalconTokenizer'],
help='What type of tokenizer to use.')
group.add_argument('--tokenizer_model', type=str, default=None,
help='Sentencepiece tokenizer model.')
group.add_argument("--no_new_tokens", action="store_false", dest="new_tokens",
help=("Do not add special tokens (e.g. CLS, MASK, etc) "
"in the sentenciepiece tokenizer"))
group.add_argument('--data_impl', type=str, default='infer',
choices=['lazy', 'cached', 'mmap', 'infer'],
help='Implementation of indexed datasets.')
group.add_argument('--reset_position_ids', action='store_true',
help='Reset posistion ids after end-of-document token.')
group.add_argument('--reset_attention_mask', action='store_true',
help='Reset self attention maske after '
'end-of-document token.')
group.add_argument('--eod_mask_loss', action='store_true',
help='Mask loss for the end of document tokens.')
return parser
def _add_autoresume_args(parser):
group = parser.add_argument_group(title='autoresume')
group.add_argument('--adlr_autoresume', action='store_true',
help='Enable autoresume on adlr cluster.')
group.add_argument('--adlr_autoresume_interval', type=int, default=1000,
help='Intervals over which check for autoresume'
'termination signal')
return parser
def _add_biencoder_args(parser):
group = parser.add_argument_group(title='biencoder')
# network size
group.add_argument('--ict_head_size', type=int, default=None,
help='Size of block embeddings to be used in ICT and '
'REALM (paper default: 128)')
group.add_argument('--biencoder_projection_dim', type=int, default=0,
help='Size of projection head used in biencoder')
group.add_argument('--biencoder_shared_query_context_model', action='store_true',
help='Whether to share the parameters of the query '
'and context models or not')
# checkpointing
group.add_argument('--ict_load', type=str, default=None,
help='Directory containing an ICTBertModel checkpoint')
group.add_argument('--bert_load', type=str, default=None,
help='Directory containing an BertModel checkpoint '
'(needed to start ICT and REALM)')
# data
group.add_argument('--titles_data_path', type=str, default=None,
help='Path to titles dataset used for ICT')
group.add_argument('--query_in_block_prob', type=float, default=0.1,
help='Probability of keeping query in block for '
'ICT dataset')
group.add_argument('--use_one_sent_docs', action='store_true',
help='Whether to use one sentence documents in ICT')
group.add_argument('--evidence_data_path', type=str, default=None,
help='Path to Wikipedia Evidence frm DPR paper')
# training
group.add_argument('--retriever_report_topk_accuracies', nargs='+', type=int,
default=[], help="Which top-k accuracies to report "
"(e.g. '1 5 20')")
group.add_argument('--retriever_score_scaling', action='store_true',
help='Whether to scale retriever scores by inverse '
'square root of hidden size')
# faiss index
group.add_argument('--block_data_path', type=str, default=None,
help='Where to save/load BlockData to/from')
group.add_argument('--embedding_path', type=str, default=None,
help='Where to save/load Open-Retrieval Embedding'
' data to/from')
# indexer
group.add_argument('--indexer_batch_size', type=int, default=128,
help='How large of batches to use when doing indexing '
'jobs')
group.add_argument('--indexer_log_interval', type=int, default=1000,
help='After how many batches should the indexer '
'report progress')
return parser
def _add_vision_args(parser):
group = parser.add_argument_group(title="vision")
# general vision arguements
group.add_argument('--num_classes', type=int, default=1000,
help='num of classes in vision classificaiton task')
group.add_argument('--img_h', type=int, default=224,
help='Image height for vision classification task')
group.add_argument('--img_w', type=int, default=224,
help='Image height for vision classification task')
group.add_argument('--num_channels', type=int, default=3,
help='Number of channels in input image data')
group.add_argument('--patch_dim', type=int, default=16,
help='patch dimension')
group.add_argument('--classes_fraction', type=float, default=1.0,
help='training with fraction of classes.')
group.add_argument('--data_per_class_fraction', type=float, default=1.0,
help='training with fraction of data per class.')
group.add_argument('--no_data_sharding', action='store_false',
help='Disable data sharding.',
dest='data_sharding')
group.add_argument('--head_lr_mult', type=float, default=1.0,
help='learning rate multiplier for head during finetuning')
# dino arguments
group.add_argument('--iter_per_epoch', type=int, default=1250,
help='iterations per epoch')
group.add_argument('--dino_local_img_size', type=int, default=96,
help='Image size for vision classification task')
group.add_argument('--dino_local_crops_number', type=int, default=10,
help='Number of local crops')
group.add_argument('--dino_head_hidden_size', type=int, default=2048,
help='Hidden dimension size in dino head')
group.add_argument('--dino_bottleneck_size', type=int, default=256,
help='Bottle neck dimension in dino head ')
group.add_argument('--dino_freeze_last_layer', type=float, default=1,
help='Freezing last layer weights')
group.add_argument('--dino_norm_last_layer', action='store_true',
help='Disable Norm in last layer.')
group.add_argument('--dino_warmup_teacher_temp', type=float, default=0.04,
help='warump teacher temperature')
group.add_argument('--dino_teacher_temp', type=float, default=0.07,
help='teacher temperature')
group.add_argument('--dino_warmup_teacher_temp_epochs', type=int, default=30,
help='warmup teacher temperaure epochs')
return parser