metadata
license: mit
task_categories:
- summarization
language:
- en
pretty_name: aclsum
size_categories:
- n<1K
configs:
- config_name: abstractive
default: true
data_files:
- split: train
path: abstractive/train.jsonl
- split: validation
path: abstractive/val.jsonl
- split: test
path: abstractive/test.jsonl
- config_name: extractive
data_files:
- split: train
path: extractive/train.jsonl
- split: validation
path: extractive/val.jsonl
- split: test
path: extractive/test.jsonl
ACLSum: A New Dataset for Aspect-based Summarization of Scientific Publications
This repository contains data for our paper "ACLSum: A New Dataset for Aspect-based Summarization of Scientific Publications" and a small utility class to work with it.
HuggingFace datasets
You can also use Huggin Face datasets to load ACLSum (dataset link). This would be convenient if you want to train transformer models using our dataset.
Just do,
from datasets import load_dataset
dataset = load_dataset("sobamchan/aclsum", "challenge", split="train")