|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Capes: Parallel corpus of theses and dissertation abstracts in Portuguese and English from CAPES""" |
|
|
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{soares2018parallel, |
|
title={A Parallel Corpus of Theses and Dissertations Abstracts}, |
|
author={Soares, Felipe and Yamashita, Gabrielli Harumi and Anzanello, Michel Jose}, |
|
booktitle={International Conference on Computational Processing of the Portuguese Language}, |
|
pages={345--352}, |
|
year={2018}, |
|
organization={Springer} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
A parallel corpus of theses and dissertations abstracts in English and Portuguese were collected from the \ |
|
CAPES website (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) - Brazil. \ |
|
The corpus is sentence aligned for all language pairs. Approximately 240,000 documents were \ |
|
collected and aligned using the Hunalign algorithm. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://sites.google.com/view/felipe-soares/datasets#h.p_kxOR6EhHm2a6" |
|
|
|
_URL = "https://ndownloader.figstatic.com/files/14015837" |
|
|
|
|
|
class Capes(datasets.GeneratorBasedBuilder): |
|
"""Capes: Parallel corpus of theses and dissertation abstracts in Portuguese and English from CAPES""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="en-pt", |
|
version=datasets.Version("1.0.0"), |
|
description="Parallel corpus of theses and dissertation abstracts in Portuguese and English from CAPES", |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=tuple(self.config.name.split("-")))} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
archive = dl_manager.download(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"source_file": "en_pt.en", |
|
"target_file": "en_pt.pt", |
|
"src_files": dl_manager.iter_archive(archive), |
|
"tgt_files": dl_manager.iter_archive(archive), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, source_file, target_file, src_files, tgt_files): |
|
source, target = tuple(self.config.name.split("-")) |
|
for src_path, src_f in src_files: |
|
if src_path == source_file: |
|
for tgt_path, tgt_f in tgt_files: |
|
if tgt_path == target_file: |
|
for idx, (l1, l2) in enumerate(zip(src_f, tgt_f)): |
|
l1 = l1.decode("utf-8").strip() |
|
l2 = l2.decode("utf-8").strip() |
|
if l1 and l2: |
|
result = {"translation": {source: l1, target: l2}} |
|
yield idx, result |
|
break |
|
break |
|
|