simplecloud's picture
Upload folder using huggingface_hub
fca4fc0 verified
#!/usr/bin/env python3
"""
Debug wrapper for DeepSpeed training
This script allows debugging the training process step by step
"""
import os
import sys
import subprocess
import argparse
from pathlib import Path
def setup_environment():
"""Setup environment variables for debugging"""
env_vars = {
'RANK': '1',
'MASTER_PORT': '29571',
'LOCAL_BATCH_SIZE': '2',
'GRADIENT_ACCUMULATION_STEPS': '4',
'TRANSFORMERS_OFFLINE': '1',
'WANDB_PROJECT': 'vtimellm',
'MODEL_VERSION': 'vicuna-v1-5-7b',
'OUTPUT_DIR': './outputs/',
'STAGE4': './outputs/vtimellm-vicuna-v1-5-7b-activitynet-stage4',
'PYTHONPATH': f"{os.getcwd()}:{os.environ.get('PYTHONPATH', '')}",
'CUDA_VISIBLE_DEVICES': '1',
'TORCH_USE_CUDA_DSA': '1',
'TRANSFORMERS_VERBOSITY': 'info',
'TOKENIZERS_PARALLELISM': 'false'
}
for key, value in env_vars.items():
os.environ[key] = value
return env_vars
def check_required_files():
"""Check if all required files exist"""
required_files = [
"./checkpoints/vicuna-7b-v1.5",
"./data/activitynet/mdpo-train.json",
"./data/activitynet/videos/train",
"./data/activitynet/clipvitl14-vtimellm.pth",
"./checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin",
"./checkpoints/vtimellm-vicuna-v1-5-7b-stage2",
"./checkpoints/vtimellm-vicuna-v1-5-7b-stage3",
"./checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4",
"./scripts/zero2.json"
]
missing_files = []
for file_path in required_files:
if not Path(file_path).exists():
missing_files.append(file_path)
else:
print(f"✓ Found: {file_path}")
if missing_files:
print("✗ Missing files:")
for file_path in missing_files:
print(f" {file_path}")
return False
return True
def check_gpu():
"""Check GPU availability"""
try:
result = subprocess.run(['nvidia-smi', '--query-gpu=name,memory.total,memory.free', '--format=csv,noheader,nounits'],
capture_output=True, text=True)
if result.returncode == 0:
print("=== GPU Information ===")
print(result.stdout)
print("========================")
return True
else:
print("Warning: nvidia-smi not available or no GPU found")
return False
except FileNotFoundError:
print("Warning: nvidia-smi not found")
return False
def create_output_dir():
"""Create output directory"""
output_dir = "./outputs/vtimellm-vicuna-v1-5-7b-activitynet-stage5"
Path(output_dir).mkdir(parents=True, exist_ok=True)
print(f"Created output directory: {output_dir}")
return output_dir
def run_training():
"""Run the training with DeepSpeed"""
env_vars = setup_environment()
print("=== Debug Environment Setup ===")
for key, value in env_vars.items():
print(f"{key}: {value}")
print("================================")
print("=== Checking Required Files ===")
if not check_required_files():
print("Error: Missing required files. Please check the paths.")
return False
print("=== Checking GPU ===")
check_gpu()
print("=== Creating Output Directory ===")
create_output_dir()
# DeepSpeed command
cmd = [
"deepspeed",
"--include", f"localhost:{env_vars['RANK']}",
"--master_port", env_vars['MASTER_PORT'],
"vtimellm/train/train_dpo_mem.py",
"--deepspeed", "./scripts/zero2.json",
"--lora_enable", "True",
"--lora_r", "8",
"--lora_alpha", "128",
"--training_stage", "3",
"--finetuning", "True",
"--model_name_or_path", "./checkpoints/vicuna-7b-v1.5",
"--version", "v1",
"--data_path", "./data/activitynet/mdpo-train.json",
"--data_folder", "./data/activitynet/videos/train",
"--feat_folder", "./data/activitynet/clipvitl14-vtimellm.pth",
"--pretrain_mm_mlp_adapter", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage1/mm_projector.bin",
"--stage2_path", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage2",
"--stage3_path", "./checkpoints/vtimellm-vicuna-v1-5-7b-stage3",
"--stage4_path", "checkpoints/vtimellm-vicuna-v1-5-7b-activitynet-stage4",
"--output_dir", "./outputs/vtimellm-vicuna-v1-5-7b-activitynet-stage5",
"--bf16", "True",
"--max_steps", "100",
"--per_device_train_batch_size", env_vars['LOCAL_BATCH_SIZE'],
"--gradient_accumulation_steps", env_vars['GRADIENT_ACCUMULATION_STEPS'],
"--evaluation_strategy", "no",
"--save_strategy", "no",
"--save_steps", "50000",
"--save_total_limit", "10",
"--learning_rate", "1e-6",
"--freeze_mm_mlp_adapter", "True",
"--weight_decay", "0.",
"--warmup_ratio", "0.1",
"--lr_scheduler_type", "cosine",
"--logging_steps", "1",
"--tf32", "True",
"--model_max_length", "2048",
"--gradient_checkpointing", "True",
"--dataloader_num_workers", "4",
"--lazy_preprocess", "True",
"--report_to", "none",
"--run_name", "vtimellm-vicuna-v1-5-7b-activitynet-stage5",
"--gamma", "0.0",
"--beta", "0.5",
"--dpo_alpha", "1.0",
"--train4dpo"
]
print("=== Starting Debug Training ===")
print(f"Command: {' '.join(cmd)}")
print("================================")
try:
# Run the command
result = subprocess.run(cmd, check=True)
print("=== Training Completed Successfully ===")
return True
except subprocess.CalledProcessError as e:
print(f"=== Training Failed with Error Code: {e.returncode} ===")
return False
except KeyboardInterrupt:
print("=== Training Interrupted by User ===")
return False
def main():
parser = argparse.ArgumentParser(description="Debug wrapper for MDPO training")
parser.add_argument("--check-only", action="store_true", help="Only check environment and files")
parser.add_argument("--dry-run", action="store_true", help="Show command without executing")
args = parser.parse_args()
if args.check_only:
setup_environment()
check_required_files()
check_gpu()
create_output_dir()
return
if args.dry_run:
env_vars = setup_environment()
cmd = [
"deepspeed",
"--include", f"localhost:{env_vars['RANK']}",
"--master_port", env_vars['MASTER_PORT'],
"vtimellm/train/train_dpo_mem.py",
# ... rest of arguments
]
print("Command that would be executed:")
print(" ".join(cmd))
return
success = run_training()
sys.exit(0 if success else 1)
if __name__ == "__main__":
main()