snli-zh / README.md
shibing624's picture
Update README.md
16af6a7
|
raw
history blame
4.02 kB
metadata
annotations_creators:
  - shibing624
language_creators:
  - liuhuanyong
language:
  - zh
license: cc-by-4.0
multilinguality:
  - monolingual
size_categories:
  - 100K<n<20M
source_datasets:
  - https://github.com/liuhuanyong/ChineseTextualInference/
task_categories:
  - text-classification
task_ids:
  - natural-language-inference
  - semantic-similarity-scoring
  - text-scoring
paperswithcode_id: snli
pretty_name: Stanford Natural Language Inference

Dataset Card for SNLI_zh

Dataset Description

Dataset Summary

中文SNLI数据集,翻译自英文SNLI

img

Supported Tasks and Leaderboards

Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。

中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果:

Leaderboard: NLI_zh leaderboard

Languages

数据集均是简体中文文本。

Dataset Structure

Data Instances

An example of 'train' looks as follows.

sentence1	sentence2	gold_label
是的,我想一个洞穴也会有这样的问题	我认为洞穴可能会有更严重的问题。	neutral
几周前我带他和一个朋友去看幼儿园警察	我还没看过幼儿园警察,但他看了。	contradiction
航空旅行的扩张开始了大众旅游的时代,希腊和爱琴海群岛成为北欧人逃离潮湿凉爽的夏天的令人兴奋的目的地。	航空旅行的扩大开始了许多旅游业的发展。	entailment

Data Fields

The data fields are the same among all splits.

  • sentence1: a string feature.
  • sentence2: a string feature.
  • label: a classification label, with possible values including entailment(0), neutral(1), contradiction(2). 注意:此数据集0表示相似,2表示不相似。

Data Splits

$ wc -l ChineseTextualInference-train.txt
  420000 total

Dataset Creation

Curation Rationale

作为中文SNLI(natural langauge inference)数据集,这里把这个数据集上传到huggingface的datasets,方便大家使用。

Source Data

Initial Data Collection and Normalization

Who are the source language producers?

数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。

@inproceedings{snli:emnlp2015, Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.}, Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, Publisher = {Association for Computational Linguistics}, Title = {A large annotated corpus for learning natural language inference}, Year = {2015} }

Annotations

Annotation process

Who are the annotators?

原作者。

Personal and Sensitive Information

Considerations for Using the Data

Social Impact of Dataset

This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context.

Systems that are successful at such a task may be more successful in modeling semantic representations.

Discussion of Biases

Other Known Limitations

Additional Information

Dataset Curators

Licensing Information

用于学术研究。

Contributions

shibing624 add this dataset.