Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- he
|
4 |
+
tags:
|
5 |
+
- legal, verdicts, metadata, hebrew
|
6 |
+
pretty_name: find precedents in Legal documents
|
7 |
+
size_categories:
|
8 |
+
- 100K<n<1M
|
9 |
+
task_ids:
|
10 |
+
- language-modeling
|
11 |
+
- masked-language-modeling
|
12 |
+
- document-retrieval
|
13 |
+
task_categories:
|
14 |
+
- text-generation
|
15 |
+
- text-retrieval
|
16 |
+
license: openrail
|
17 |
+
---
|
18 |
+
# Dataset Card for Precedents Dataset
|
19 |
+
|
20 |
+
### Dataset Summary
|
21 |
+
This dataset represents a 2022 snapshot of the Supreme Court of Israel public verdicts and decisions and the extracted precedents of each document.
|
22 |
+
It can be loaded with the dataset package:
|
23 |
+
```
|
24 |
+
import datasets
|
25 |
+
data = datasets.load_dataset('shay681/Precedents')
|
26 |
+
```
|
27 |
+
|
28 |
+
### Dataset Structure
|
29 |
+
The dataset is a json lines file with each line corresponding to a single document and containing document identification, text and metadata.
|
30 |
+
|
31 |
+
### Data Fields
|
32 |
+
The file contains the following fields:
|
33 |
+
- Id - document id
|
34 |
+
- text - text of the document.
|
35 |
+
- Precedents_Found - precedents extracted from the text column.
|
36 |
+
|
37 |
+
### Data Splits
|
38 |
+
The entire dataset is qualified as 'train'.
|
39 |
+
|
40 |
+
### Citation Information
|
41 |
+
Shay Doner
|