Datasets:
Librarian Bot: Add language metadata for dataset (#2)
Browse files- Librarian Bot: Add language metadata for dataset (84e7b46be30f2e7af7a6aaf929e849e1cee0a297)
Co-authored-by: Librarian Bot (Bot) <librarian-bot@users.noreply.huggingface.co>
README.md
CHANGED
@@ -1,39 +1,41 @@
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
configs:
|
4 |
- config_name: data_records
|
5 |
data_files:
|
6 |
- split: train
|
7 |
path:
|
8 |
-
-
|
9 |
- split: dev
|
10 |
-
path:
|
11 |
-
-
|
12 |
- split: test
|
13 |
-
path:
|
14 |
-
-
|
15 |
- config_name: qs
|
16 |
data_files:
|
17 |
- split: train
|
18 |
path:
|
19 |
-
-
|
20 |
- split: dev
|
21 |
-
path:
|
22 |
-
-
|
23 |
- split: test
|
24 |
-
path:
|
25 |
-
-
|
26 |
- config_name: qs_rel
|
27 |
data_files:
|
28 |
- split: train
|
29 |
path:
|
30 |
-
-
|
31 |
- split: dev
|
32 |
-
path:
|
33 |
-
-
|
34 |
- split: test
|
35 |
-
path:
|
36 |
-
-
|
37 |
---
|
38 |
|
39 |
The dataset contains a random 0.7/0.1/0.2 train/dev/test splits of nq dataset from KILT https://github.com/facebookresearch/KILT for benchmarking embedding model fine-tuning.
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
license: apache-2.0
|
5 |
configs:
|
6 |
- config_name: data_records
|
7 |
data_files:
|
8 |
- split: train
|
9 |
path:
|
10 |
+
- data.parquet
|
11 |
- split: dev
|
12 |
+
path:
|
13 |
+
- data.parquet
|
14 |
- split: test
|
15 |
+
path:
|
16 |
+
- data.parquet
|
17 |
- config_name: qs
|
18 |
data_files:
|
19 |
- split: train
|
20 |
path:
|
21 |
+
- train/qs.parquet
|
22 |
- split: dev
|
23 |
+
path:
|
24 |
+
- dev/qs.parquet
|
25 |
- split: test
|
26 |
+
path:
|
27 |
+
- test/qs.parquet
|
28 |
- config_name: qs_rel
|
29 |
data_files:
|
30 |
- split: train
|
31 |
path:
|
32 |
+
- train/qs_rel.parquet
|
33 |
- split: dev
|
34 |
+
path:
|
35 |
+
- dev/qs_rel.parquet
|
36 |
- split: test
|
37 |
+
path:
|
38 |
+
- test/qs_rel.parquet
|
39 |
---
|
40 |
|
41 |
The dataset contains a random 0.7/0.1/0.2 train/dev/test splits of nq dataset from KILT https://github.com/facebookresearch/KILT for benchmarking embedding model fine-tuning.
|