sepz librarian-bot commited on
Commit
a18f865
·
verified ·
1 Parent(s): 57a91d1

Librarian Bot: Add language metadata for dataset (#2)

Browse files

- Librarian Bot: Add language metadata for dataset (84e7b46be30f2e7af7a6aaf929e849e1cee0a297)


Co-authored-by: Librarian Bot (Bot) <librarian-bot@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +17 -15
README.md CHANGED
@@ -1,39 +1,41 @@
1
  ---
 
 
2
  license: apache-2.0
3
  configs:
4
  - config_name: data_records
5
  data_files:
6
  - split: train
7
  path:
8
- - "data.parquet"
9
  - split: dev
10
- path:
11
- - "data.parquet"
12
  - split: test
13
- path:
14
- - "data.parquet"
15
  - config_name: qs
16
  data_files:
17
  - split: train
18
  path:
19
- - "train/qs.parquet"
20
  - split: dev
21
- path:
22
- - "dev/qs.parquet"
23
  - split: test
24
- path:
25
- - "test/qs.parquet"
26
  - config_name: qs_rel
27
  data_files:
28
  - split: train
29
  path:
30
- - "train/qs_rel.parquet"
31
  - split: dev
32
- path:
33
- - "dev/qs_rel.parquet"
34
  - split: test
35
- path:
36
- - "test/qs_rel.parquet"
37
  ---
38
 
39
  The dataset contains a random 0.7/0.1/0.2 train/dev/test splits of nq dataset from KILT https://github.com/facebookresearch/KILT for benchmarking embedding model fine-tuning.
 
1
  ---
2
+ language:
3
+ - en
4
  license: apache-2.0
5
  configs:
6
  - config_name: data_records
7
  data_files:
8
  - split: train
9
  path:
10
+ - data.parquet
11
  - split: dev
12
+ path:
13
+ - data.parquet
14
  - split: test
15
+ path:
16
+ - data.parquet
17
  - config_name: qs
18
  data_files:
19
  - split: train
20
  path:
21
+ - train/qs.parquet
22
  - split: dev
23
+ path:
24
+ - dev/qs.parquet
25
  - split: test
26
+ path:
27
+ - test/qs.parquet
28
  - config_name: qs_rel
29
  data_files:
30
  - split: train
31
  path:
32
+ - train/qs_rel.parquet
33
  - split: dev
34
+ path:
35
+ - dev/qs_rel.parquet
36
  - split: test
37
+ path:
38
+ - test/qs_rel.parquet
39
  ---
40
 
41
  The dataset contains a random 0.7/0.1/0.2 train/dev/test splits of nq dataset from KILT https://github.com/facebookresearch/KILT for benchmarking embedding model fine-tuning.