Datasets:
annotations_creators:
- machine-generated
language:
- en
language_creators:
- found
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: unarXive IMRaD classification
size_categories:
- 100K<n<1M
tags:
- arXiv.org
- arXiv
- IMRaD
- publication
- paper
- preprint
- section
- physics
- mathematics
- computer science
- cs
task_categories:
- text-classification
task_ids:
- multi-class-classification
source_datasets:
- extended|10.5281/zenodo.7752615
dataset_info:
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 451908280
num_examples: 520053
- name: test
num_bytes: 4650429
num_examples: 5000
- name: validation
num_bytes: 4315597
num_examples: 5001
download_size: 482376743
dataset_size: 460874306
Dataset Card for unarXive IMRaD classification
Dataset Description
- Homepage: https://github.com/IllDepence/unarXive
- Paper: unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network
Dataset Summary
The unarXive IMRaD classification dataset contains 530k paragraphs from computer science papers and the IMRaD section they originate from. The paragraphs are derived from unarXive.
The dataset can be used as follows.
from datasets import load_dataset
imrad_data = load_dataset('saier/unarXive_imrad_clf')
imrad_data = imrad_data.class_encode_column('label') # assign target label column
imrad_data = imrad_data.remove_columns('_id') # remove sample ID column
Dataset Structure
Data Instances
Each data instance contains the paragraph’s text as well as one of the labels ('i', 'm', 'r', 'd', 'w' — for Introduction, Methods, Results, Discussion and Related Work). An example is shown below.
{'_id': '789f68e7-a1cc-4072-b07d-ecffc3e7ca38',
'label': 'm',
'text': 'To link the mentions encoded by BERT to the KGE entities, we define '
'an entity linking loss as cross-entropy between self-supervised '
'entity labels and similarities obtained from the linker in KGE '
'space:\n'
'\\(\\mathcal {L}_{EL}=\\sum -\\log \\dfrac{\\exp (h_m^{proj}\\cdot '
'\\textbf {e})}{\\sum _{\\textbf {e}_j\\in \\mathcal {E}} \\exp '
'(h_m^{proj}\\cdot \\textbf {e}_j)}\\) \n'}
Data Splits
The data is split into training, development, and testing data as follows.
- Training: 520,053 instances
- Development: 5000 instances
- Testing: 5001 instances
Dataset Creation
Source Data
The paragraph texts are extracted from the data set unarXive.
Who are the source language producers?
The paragraphs were written by the authors of the arXiv papers. In file license_info.jsonl
author and text licensing information can be found for all samples, An example is shown below.
{'authors': 'Yusuke Sekikawa, Teppei Suzuki',
'license': 'http://creativecommons.org/licenses/by/4.0/',
'paper_arxiv_id': '2011.09852',
'sample_ids': ['cc375518-347c-43d0-bfb2-f88564d66df8',
'18dc073e-a48e-488e-b34c-e5fc3cb8a4ca',
'0c2e89b3-d863-4bc2-9e11-8f6c48d867cb',
'd85e46cf-b11d-49b6-801b-089aa2dd037d',
'92915cea-17ab-4a98-aad2-417f6cdd53d2',
'e88cb422-47b7-4f69-9b0b-fbddf8140d98',
'4f5094a4-0e6e-46ae-a34d-e15ce0b9803c',
'59003494-096f-4a7c-ad65-342b74eed561',
'6a99b3f5-217e-4d3d-a770-693483ef8670']}
Annotations
Class labels were automatically determined (see implementation).
Considerations for Using the Data
Discussion and Biases
Because only paragraphs unambiguously assignable to one of the IMRaD classeswere used, a certain selection bias is to be expected in the data.
Other Known Limitations
Depending on authors’ writing styles as well LaTeX processing quirks, paragraphs can vary in length a significantly.
Additional Information
Licensing information
The dataset is released under the Creative Commons Attribution-ShareAlike 4.0.
Citation Information
@inproceedings{Saier2023unarXive,
author = {Saier, Tarek and Krause, Johan and F\"{a}rber, Michael},
title = {{unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network}},
booktitle = {Proceedings of the 23rd ACM/IEEE Joint Conference on Digital Libraries},
year = {2023},
series = {JCDL '23}
}