Datasets:
Languages:
Yue Chinese
License:
import xml.etree.ElementTree as ET | |
import csv | |
import pandas as pd | |
from pydub import AudioSegment | |
import re | |
import sys | |
from typing import List, Tuple, Dict | |
# Global dictionary to store custom character choices for each pinyin | |
custom_choices: Dict[str, str] = {} | |
def parse_xml(xml_content: str) -> List[Tuple[int, int, str]]: | |
root = ET.fromstring(xml_content) | |
time_order = {ts.get('TIME_SLOT_ID'): int(ts.get('TIME_VALUE')) | |
for ts in root.iter('TIME_SLOT')} | |
tier_data = [] | |
for tier in root.iter('TIER'): | |
tier_id = tier.get('TIER_ID') | |
if not ('-' in tier_id) and (tier_id == 'G' or tier_id == 'E'): | |
for annotation in tier.iter('ALIGNABLE_ANNOTATION'): | |
start_time = time_order[annotation.get('TIME_SLOT_REF1')] | |
end_time = time_order[annotation.get('TIME_SLOT_REF2')] | |
text = annotation.find('./ANNOTATION_VALUE').text | |
tier_data.append((start_time, end_time, text)) | |
return tier_data | |
def transform_latin_to_chinese(text: str, dict_df: pd.DataFrame, output_wav: str) -> Tuple[str, pd.DataFrame]: | |
global custom_choices | |
transformed_text = "" | |
i = 0 | |
while i < len(text): | |
char = text[i] | |
if char == "&": | |
j = i + 1 | |
while j < i + 7 and j < len(text) and text[j].isalpha(): | |
j += 1 | |
if j < len(text) and text[j].isdigit(): | |
term = text[(i+1):j + 1].lower() | |
pinyin_entries = dict_df[dict_df['拼音'] == term]['繁體'] | |
if not pinyin_entries.empty: | |
if len(pinyin_entries) > 1: | |
full_sentence = f"Full Sentence: {text}" | |
print(full_sentence) | |
print(f"Path: {output_wav}") | |
print(f"Multiple entries found for { | |
term}. Choose one (or enter a custom character):") | |
for idx, entry in enumerate(pinyin_entries): | |
print(f"{idx + 1}. {entry}") | |
print(f"{len(pinyin_entries) + | |
1}. Enter a custom character") | |
choice = input("Enter the number of your choice: ") | |
if choice.isdigit() and int(choice) <= len(pinyin_entries): | |
choice = int(choice) - 1 | |
transformed_text += pinyin_entries.values[choice] | |
custom_choices[term] = pinyin_entries.values[choice] | |
elif choice == str(len(pinyin_entries) + 1): | |
custom_choice = input( | |
f"Enter a custom character for {term}: ") | |
transformed_text += custom_choice | |
custom_choices[term] = custom_choice | |
# Update DataFrame with the custom character | |
dict_df = pd.concat([dict_df, pd.DataFrame( | |
[{'拼音': term, '繁體': custom_choice}])], ignore_index=True) | |
else: | |
print("Invalid choice. Using the default character.") | |
transformed_text += pinyin_entries.values[0] | |
else: | |
try: | |
transformed_text += pinyin_entries.values[0] or "" | |
except: | |
pass | |
else: | |
print(f"Full Sentence: {text}") | |
print(f"Path: {output_wav}") | |
custom_choice = input(f"No corresponding character found for { | |
term}. Enter a custom character: ") | |
transformed_text += custom_choice | |
custom_choices[term] = custom_choice | |
# Update DataFrame with the custom character | |
dict_df = pd.concat([dict_df, pd.DataFrame( | |
[{'拼音': term, '繁體': custom_choice}])], ignore_index=True) | |
i = j + 1 | |
else: | |
transformed_text += char | |
i += 1 | |
else: | |
transformed_text += char | |
i += 1 | |
return transformed_text, dict_df | |
def clean_transformed_text(text: str) -> str: | |
# Replace "#" with a blank space | |
text = text.replace("#", " ") | |
# Remove special characters and symbols | |
text = re.sub(r"[^a-zA-Z0-9\u4e00-\u9fff ]", "", text) | |
# Remove HTML entities (e.g., &) | |
text = re.sub(r"&[a-zA-Z]+;", "", text) | |
return text | |
def extract_audio_segments(input_wav: str, output_wav: str, start_time: int, end_time: int) -> None: | |
audio = AudioSegment.from_wav(input_wav) | |
segment = audio[start_time:end_time] | |
segment.export(output_wav, format="wav") | |
def main() -> None: | |
with open(sys.argv[1], "r", encoding="utf-8") as file: | |
xml_content = file.read() | |
tier_data = parse_xml(xml_content) | |
with open("./粵語字典_(耶魯_數字).csv", "r", encoding="utf-8") as dict_file: | |
dict_csv = dict_file.name | |
dict_df = pd.read_csv(dict_csv) | |
# Replace with your actual audio file | |
audio_file = sys.argv[1].replace("eaf", "wav") | |
transformed_tier_data = [] | |
for i, (start_time, end_time, text) in enumerate(tier_data): | |
output_wav = f"audio/{sys.argv[1].split('/') | |
[-1].replace('.eaf', '')}_ts{i+1}.wav" | |
extract_audio_segments(audio_file, output_wav, start_time, end_time) | |
transformed_text, dict_df = transform_latin_to_chinese(text, dict_df, output_wav) | |
transformed_text = clean_transformed_text(transformed_text) | |
transformed_tier_data.append( | |
(start_time, end_time, transformed_text, output_wav.split("/")[-1])) | |
# Save the updated DataFrame to the CSV file | |
dict_df.to_csv(dict_csv, index=False, encoding='utf-8') | |
tsv_filename = "transcript/" + \ | |
sys.argv[1].split("/")[-1].replace("eaf", "tsv") | |
with open(tsv_filename, "w", newline="", encoding="utf-8") as tsvfile: | |
tsv_writer = csv.writer(tsvfile, delimiter='\t') | |
tsv_writer.writerow( | |
["timestamp_start", "timestamp_end", "text", "path"]) | |
tsv_writer.writerows(transformed_tier_data) | |
if __name__ == "__main__": | |
main() | |