sea_wiki / dedup_raw_wiki_data.py
sabilmakbar's picture
Init Commit (#1)
79297dc
raw
history blame
19.1 kB
# %%
'''
Script on Cleansing Wikipedia Data that has been extracted from extract_raw_wiki_data.py
'''
#core functionality modules
import os, gc
import logging
import argparse
import warnings
from functools import partial
#text preprocess modules
import re
import urllib
from xml.etree import ElementTree as ET
#dataset related modules
import numpy as np
import pandas as pd
### MODULES DEFINITION ###
#create custom type-checking of incoming ArgParse
def argparse_bool_check(value: str):
#cast str with value like float into actual float
try:
value = float(value)
#can't be parsed as float, keep as it is
except ValueError:
pass
#cast float-like value (incl int) into str
if isinstance(value, float) and int(value) == value:
value = str(int(value))
#raise ArgumentTypeError if the value isn't in string already
else:
if not isinstance(value, str):
raise argparse.ArgumentTypeError(f"Not the correct value (args: {value})! Expected is cast-able to '1' or '0' or already in string. Please rectify!")
#check for these combinations of values
if value.lower() in ("yes", "true", "t", "y", "1"):
return True
elif value.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError(f"Value Error! Not the correct value (args: {value})! Please rectify!")
def text_processing_args_checker(value: str):
if value not in ["all", "text", "title", "neither"]:
raise argparse.ArgumentTypeError(f"Value Error! Not the correct value (args: {value})! Please rectify!")
else:
return value
def set_logger():
# Set up the logger
logging.basicConfig(
level=logging.INFO, # Set the desired logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
format='%(asctime)s [%(levelname)s]: %(message)s', # Customize the log message format
datefmt='%Y-%m-%d %H:%M:%S' # Customize the date/time format
)
# Create a file handler to write logs into a file
file_handler = logging.FileHandler('app.log')
# Set the log level for the file handler
file_handler.setLevel(logging.INFO)
# Create a formatter for the file handler (customize the log format for the file)
file_formatter = logging.Formatter('%(asctime)s [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
file_handler.setFormatter(file_formatter)
logger = logging.getLogger("Wiki Dataset Generation")
logger.addHandler(file_handler)
return logger
#wrapper fn of text-cleansing
def text_cleansing_wrapper(fn, exception_class_names = []):
#ensure caught exception class names passed to decorator is a list (if provided)
if not isinstance(exception_class_names, list):
raise TypeError("Exception Class Name for Wrapper is not a list!")
#ensure all values of caught exception class name list is a string
if not all([isinstance(val, str) for val in exception_class_names]):
raise ValueError("Found an element of Exception Class Name for Wrapper that is not a string!")
#lowercase all exception class name
exception_class_names = [val.lower() for val in exception_class_names]
if len(exception_class_names) == 0:
warnings.warn("The wrapper receives 0 `exception_class_names` to be warned! Will return the function value with its input!")
def text_fn_wrapper(text: str, *args, **kwargs):
try:
return fn(text, *args, **kwargs)
except Exception as e:
_exc_name = type(e).__name__
if _exc_name.lower() not in exception_class_names and len(exception_class_names)>0:
raise Exception(f"Exception Occured of {_exc_name} in {fn.__name__}!") from e
else:
_followup_msg = "Returning the input as it is..."
_text_warn = f"An exception of {_exc_name} occured in {fn.__name__}! {_followup_msg}"
warnings.warn(_text_warn)
return text
return text_fn_wrapper
#create html tags cleanser of a given text
partial_decorator = partial(text_cleansing_wrapper, exception_class_names=["parseerror"])
@partial_decorator
def remove_html_tags(text: str):
#extracted from "https://stackoverflow.com/a/9662410", w/ additional decorator of error handler
return (''.join(ET.fromstring(text).itertext())).strip()
#create url decoder of text
@text_cleansing_wrapper
def decode_url(text: str):
# return (urllib.parse.unquote(text)).encode('utf8', errors='ignore').decode().strip()
return (urllib.parse.unquote(text)).strip()
#create encoder check of text
@text_cleansing_wrapper
def check_text_by_encoder(text: str, encoder: str="utf8"):
return text.encode(encoder, errors='ignore').decode().strip()
#create excessive whitespace removal of text
@text_cleansing_wrapper
def remove_excessive_whitespace(text: str):
return re.sub("(\s)(\s+)", r"\1", text).strip()
#create non-alphanumeric removal of text
@text_cleansing_wrapper
def remove_non_alphanumeric(text: str):
return re.sub("[^a-z0-9\s]", "", text, flags=re.I).strip()
# def cleanse_wiki_text(text: str):
# return remove_html_tags(decode_url_and_remove_non_ascii(text))
# def normalize_wiki_title(text: str):
# return remove_non_alphanumeric(remove_excessive_whitespace(text.lower()))
def _text_normalizer_constructor(
remove_non_alphanumeric_bool: bool, remove_excessive_whitespace_bool: bool,
remove_html_tags_bool: bool, decode_url_bool: bool, encoder_check_bool: bool,
encoder: str="utf8"):
_lambda_fn_1 = partial(check_text_by_encoder, encoder=encoder) if encoder_check_bool else lambda x: x
_lambda_fn_2 = lambda x: remove_non_alphanumeric(_lambda_fn_1(x)) if remove_non_alphanumeric_bool else _lambda_fn_1(x)
_lambda_fn_3 = lambda x: remove_excessive_whitespace(_lambda_fn_2(x)) if remove_excessive_whitespace_bool else _lambda_fn_2(x)
_lambda_fn_4 = lambda x: remove_html_tags(_lambda_fn_3(x)) if remove_html_tags_bool else _lambda_fn_3(x)
_lambda_fn_5 = lambda x: decode_url(_lambda_fn_4(x)) if decode_url_bool else _lambda_fn_4(x)
return _lambda_fn_5
def _args_to_text_constructor_fn(**kwargs):
def _decode_options(opt: str):
# return decoded options with format `text_opt`, `title_opt`
# possible values are ["all", "text", "title", "neither"]
if opt == "all":
return True, True
elif opt == "text":
return True, False
elif opt == "title":
return False, True
else:
return False, False
kwargs_title, kwargs_text = {}, {}
kwargs_title["encoder"] = kwargs["text_encoder_choice_title"]
kwargs_text["encoder"] = kwargs["text_encoder_choice_text"]
for key, val in kwargs.items():
if key not in [
"remove_non_alphanumeric_option", "remove_excessive_whitespace_option",
"remove_html_tags_option", "decode_url_option", "encoder_check_option"]:
continue
new_key = "_".join(key.split("_")[:-1]) + "_bool"
text_opt_val, title_opt_val = _decode_options(val)
kwargs_text[new_key], kwargs_title[new_key] = text_opt_val, title_opt_val
return _text_normalizer_constructor(**kwargs_text), _text_normalizer_constructor(**kwargs_title)
def _text_processing_wrapper(text: str, _fn, mode: str="text"):
if mode not in ["text", "title"]:
raise ValueError(f"Provided `mode` isn't either 'text' or 'title'! Received: {mode}")
return _fn(text.lower()) if mode=="title" else _fn(text)
### MAIN CODE ###
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--raw-csv-path", help="Relative location of csv file containing raw Wikipedia data")
parser.add_argument("--drop-hard-dupl", help="""Flag whether to drop hard duplicates
(exact values of data of relevant text fields, Titles & Desc)""",
default=True, type=argparse_bool_check)
parser.add_argument("--drop-soft-dupl", help="""Flag whether to drop soft duplicates
(duplicates after cleansed and normalized relevant text fields, Titles & Desc)""",
default=True, type=argparse_bool_check)
parser.add_argument("--save-dir-path", help="""Relative dir path of saved Wikipedia CSV data
to the `dedup_raw_wiki_data.py` script dir""",
default=os.path.dirname(os.path.abspath(__file__)))
### THE FOLLOWING ARGUMENTS ONLY TEMPORARILY ALTER THE TEXT DATA ONLY FOR SOFT-DEDUP CHECK ###
### THE INITIAL TEXT DATA WON'T BE OVERWRITTEN AFTER BEING PREPROCESSED ###
### UNLESS YOU ARE SPECIFYING IN ARGS `overwrite-initial-title-data` AND `overwrite-initial-text-data` ###
### ARGS TO OVERWRITTE INITIAL TEXT DATA WITH PROCESSED ONES ###
parser.add_argument("--overwrite-initial-title-data", help="""Flag whether to overwrite title
init data w/ processed data (True) or keep it as it is (False)""",
default=False, type=argparse_bool_check)
parser.add_argument("--overwrite-initial-text-data", help="""Flag whether to overwrite text
init data w/ processed data (True) or keep it as it is (False)""",
default=False, type=argparse_bool_check)
### INSTANTIATOR ARGS FOR CONSTRUCTING TEXT PROCESSING FN TO BE APPLIED ###
parser.add_argument("--remove-non-alphanumeric-option", help="""Identifier which columns to be preprocessed
using `remove_non_alphanumeric` for soft duplicates detection
(Choices are "all", "text", "title", "neither")""",
default="neither", type=text_processing_args_checker)
parser.add_argument("--remove-excessive-whitespace-option", help="""Identifier which columns to be preprocessed
using `remove_excessive_whitespace` for soft duplicates detection
(Choices are "all", "text", "title", "neither")""",
default="all", type=text_processing_args_checker)
parser.add_argument("--remove-html-tags-option", help="""Identifier which columns to be preprocessed
using `remove_html_tags` for soft duplicates detection
(Choices are "all", "text", "title", "neither")""",
default="all", type=text_processing_args_checker)
parser.add_argument("--decode-url-option", help="""Identifier which columns to be preprocessed
using `decode_url` for soft duplicates detection
(Choices are "all", "text", "title", "neither")""",
default="all", type=text_processing_args_checker)
### ARGS TO CHOOSE ENCODER CHECKING AND ITS CONFIG INITIALIZATION ###
parser.add_argument("--encoder-check-option", help="""Identifier which columns to be preprocessed
using `check_text_by_encoder` for soft duplicates detection
(Choices are "all", "text", "title", "neither")""",
default="all", type=text_processing_args_checker)
parser.add_argument("--text-encoder-choice-title", help="""Identifier of title encoder type
to be applied into `check_text_by_encoder` for soft duplicates detection""",
default="utf8", type=str)
parser.add_argument("--text-encoder-choice-text", help="""Identifier of text encoder type
to be applied into `check_text_by_encoder` for soft duplicates detection""",
default="utf8", type=str)
_EXPECTED_COLNAMES = ["id", "url", "title", "text"]
logger = set_logger()
logger.info("Parsing arguments...")
args = parser.parse_args()
# class dotdict(dict):
# """dot.notation access to dictionary attributes"""
# __getattr__ = dict.get
# __setattr__ = dict.__setitem__
# __delattr__ = dict.__delitem__
# args = dotdict({
# "raw_csv_path":"",
# "drop_hard_dupl": True,
# "drop_soft_dupl": True,
# "save_dir_path": os.path.dirname(os.path.abspath(__file__)),
# "overwrite_initial_title_data": False,
# "overwrite_initial_text_data": False,
# "remove_non_alphanumeric_option":"neither",
# "remove_excessive_whitespace_option": "neither",
# "remove_html_tags_option":"neither",
# "decode_url_option":"neither",
# "encoder_check_option":"all",
# "text_encoder_choice_title":"utf8",
# "text_encoder_choice_text":"utf8"
# })
_TEXT_PROCESSING_FN, _TITLE_PROCESSING_FN = _args_to_text_constructor_fn(
remove_non_alphanumeric_option = args.remove_non_alphanumeric_option,
remove_excessive_whitespace_option = args.remove_excessive_whitespace_option,
remove_html_tags_option = args.remove_html_tags_option,
decode_url_option = args.text_encoder_choice_title,
encoder_check_option = args.encoder_check_option,
text_encoder_choice_title = args.text_encoder_choice_title,
text_encoder_choice_text = args.text_encoder_choice_text
)
raw_data_path = args.raw_csv_path
drop_hard_dupl = args.drop_hard_dupl
drop_soft_dupl = args.drop_soft_dupl
save_dir = args.save_dir_path
overwrite_initial_title_data = args.overwrite_initial_title_data
overwrite_initial_text_data = args.overwrite_initial_text_data
df = pd.read_csv(raw_data_path)
if len(set(df.columns).difference(set(_EXPECTED_COLNAMES))) != 0 or len(set(_EXPECTED_COLNAMES).difference(set(df.columns))) != 0:
raise ValueError(f"The data schema expected, consist of columns: {', '.join(df.columns.to_list())} doesn't match with expected column values of {', '.join(_EXPECTED_COLNAMES)}!")
if (not drop_hard_dupl) and (not drop_soft_dupl):
raise AssertionError("The script won't run with both `drop-hard-dupl` and `drop-soft-dupl` args turned off!")
elif (not drop_hard_dupl):
warnings.warn("The args of `drop_hard_dupl` isn't turned off! Possibly the data will contain one template value of Wikipedia (usually no contribution text!)")
#will save id identifier colname first (popping first list val)
id_colname = _EXPECTED_COLNAMES.pop(0)
# if any of the data has duplicate values from columns checked (url, title, or text),
# it means the data integrity is questionable
# i.e. copied from other article or filled with template text
# hence, we will delete those duplicated datasets
#hard duplicate drop (drop all duplicate values that has exact same text on expected unique colnames)
if drop_hard_dupl:
for colname in _EXPECTED_COLNAMES:
logger.info(f"Checking data integrity on column {colname} on removing hard-duplicate(s)...")
dupl_text_df = df[df.duplicated(subset=colname,keep=False)]
shape_of_dupl_data = dupl_text_df.shape[0]
if shape_of_dupl_data > 0:
logger.info(f"Found {shape_of_dupl_data} data duplicated! Will be dropped")
df.drop_duplicates(subset=colname, keep=False, inplace=True)
#check id/idx of the cleansed data, whether it has duplicate
# (the duplication of id/idx should came from the very first extraction, not from the cleansing)
if df[df.duplicated(subset=id_colname,keep=False)].shape[0] > 0:
logger.info("Duplicated ID found! Re-assigning ID to the new ones based on `df.reset_index` method!")
df[id_colname] = df.reset_index().index
#soft duplicate drop (drop all except one duplicate values that has exact same text on expected unique colnames)
#keep the data that has longest value of its raw form
if drop_soft_dupl:
idx_to_keep = set(df.index.to_list())
#clean from text & title only, url isn't needed for this process
_EXPECTED_COLNAMES.remove("url")
for colname in _EXPECTED_COLNAMES:
#Construct Text Cleanser Fn for soft-duplicate cleansing
_PROCESSING_FN = _TEXT_PROCESSING_FN if colname == "text" else _TITLE_PROCESSING_FN
text_processing_fn = partial(_text_processing_wrapper, _fn=_PROCESSING_FN, mode=colname)
logger.info(f"Checking data integrity on column {colname} on removing soft-duplicate(s)...")
_df = df.copy(deep=True)
#Setting up DF cols as String so it can be text-processed
_df = _df[[colname]]
_df[colname] = _df[colname].astype("str")
logger.info(f"Cleansing the data based on {colname}")
#applying text processing
_df[colname+"_raw_len"] = _df[colname].apply(len)
_df[colname+"_cleansed"] = _df[colname].apply(lambda row_text: text_processing_fn(text=row_text))
#overwrite its text data if set as true
if overwrite_initial_title_data and colname == "title":
df[colname] = _df[colname+"_cleansed"]
elif overwrite_initial_text_data and colname == "text":
df[colname] = _df[colname+"_cleansed"]
#choose the data to keep by "ranking" it according to len of its raw text (greatest to keep)
logger.info(f"Ranking and grouping the data based on {colname}")
_df["rk"] = _df.groupby(colname+"_cleansed")[colname+"_raw_len"].rank(method="min", ascending=False)
shape_of_dupl_data = _df[_df["rk"]>1].shape[0]
if shape_of_dupl_data > 0:
logger.info(f"Found {shape_of_dupl_data} data duplicated! Will be dropped")
_idx_to_keep = _df[_df["rk"]==1].index.to_list()
if len(_idx_to_keep)+shape_of_dupl_data != df.shape[0]:
raise AssertionError("Mismatch of data number!")
idx_to_keep = idx_to_keep.intersection(set(_idx_to_keep))
else:
logger.info(f"No soft-duplicate found in colname {colname}. Continuing")
del _df
gc.collect()
logger.info(f"The final data kept is {len(idx_to_keep)} from {df.shape[0]}")
df = df.loc[list(idx_to_keep),:]
logger.info("Saving dataset cleansed form...")
#input path splitted by ("/") for the last entry should return filename
#whereas the filename splitted by (".") except the last value should return the filename w/o ".csv" extension
_override_suffix_identifier = ""
if overwrite_initial_title_data or overwrite_initial_text_data:
_override_suffix_identifier = "_overwritten"
if overwrite_initial_text_data:
_override_suffix_identifier = "_text"+_override_suffix_identifier
if overwrite_initial_title_data:
_override_suffix_identifier = "_title"+_override_suffix_identifier
_save_file_name = ".".join(raw_data_path.split("/")[-1].split(".")[:-1]) + "_dedup_cleansed" + _override_suffix_identifier + ".csv"
_save_file_name = _save_file_name.replace("_raw", "")
df.to_csv(f"{save_dir}/{_save_file_name}", index=False)