rpmon commited on
Commit
beba220
·
verified ·
1 Parent(s): 0ffe579

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -0
README.md CHANGED
@@ -40,3 +40,133 @@ configs:
40
  - split: validation
41
  path: data/validation-*
42
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  - split: validation
41
  path: data/validation-*
42
  ---
43
+
44
+
45
+ # FMA Genre Classification Dataset
46
+
47
+ The FMA Genre Classification Dataset is a subset of the Free Music Archive (FMA), containing audio samples and genre labels for music classification tasks. This version uses the "small" subset of FMA, which contains 8,000 tracks of 30 seconds each, evenly distributed across 8 genres.
48
+
49
+ ## Dataset Description
50
+
51
+ ### Dataset Summary
52
+
53
+ This dataset consists of 8,000 audio tracks from the Free Music Archive (FMA), each 30 seconds in length, distributed across 8 musical genres. The audio has been preprocessed to ensure consistent format and sampling rate (16 kHz). The dataset is split into training (80%) and validation (20%) sets.
54
+
55
+ ### Supported Tasks
56
+
57
+ - **Audio Classification**: The dataset can be used to train models for music genre classification
58
+ - **Audio Feature Learning**: The dataset is suitable for training audio representation models
59
+
60
+ ### Languages
61
+
62
+ The audio content spans multiple languages, but the metadata is in English.
63
+
64
+ ### Dataset Structure
65
+
66
+ ```
67
+ Number of tracks: 8,000
68
+ Audio length: 30 seconds each
69
+ Sampling rate: 16kHz (resampled from 44.1kHz)
70
+ Format: MP3
71
+ Split: 80% training, 20% validation
72
+ ```
73
+
74
+ #### Data Fields
75
+
76
+ - `audio`: Audio file (MP3 format, 30s, resampled to 16kHz)
77
+ - `genre`: Genre label (one of 8 classes)
78
+ - `track_id`: Unique identifier for the track
79
+ - `title`: Track title
80
+ - `artist`: Artist name
81
+
82
+ #### Genres
83
+
84
+ 1. Electronic
85
+ 2. Experimental
86
+ 3. Folk
87
+ 4. Hip-Hop
88
+ 5. Instrumental
89
+ 6. International
90
+ 7. Pop
91
+ 8. Rock
92
+
93
+ ### Dataset Creation
94
+
95
+ #### Source Data
96
+
97
+ The dataset is derived from the Free Music Archive (FMA), specifically the "small" subset. FMA is an open and easily accessible dataset consisting of full-length audio tracks with associated metadata.
98
+
99
+ [Original FMA Dataset Paper](https://arxiv.org/abs/1612.01840)
100
+
101
+ #### Preprocessing
102
+
103
+ 1. Audio files are loaded from MP3 format
104
+ 2. Resampled from 44.1kHz to 16kHz
105
+ 3. Converted to mono if stereo
106
+ 4. Verified for consistent length (30 seconds)
107
+ 5. Metadata cleaned and verified to match existing audio files
108
+
109
+ ### Considerations for Using the Data
110
+
111
+ #### Social Impact of Dataset
112
+
113
+ This dataset promotes research in music information retrieval and machine learning while respecting creative commons licensing. It helps advance automated music understanding while providing proper attribution to artists.
114
+
115
+ #### Discussion of Biases
116
+
117
+ The dataset may contain biases in:
118
+ - Genre representation (equal distribution might not reflect real-world music distribution)
119
+ - Western music bias
120
+ - English language bias in metadata
121
+ - Artist representation
122
+
123
+ #### Other Known Limitations
124
+
125
+ - Limited to 30-second clips
126
+ - Genre boundaries can be subjective
127
+ - Some tracks might fit multiple genres
128
+ - Audio quality varies between tracks
129
+
130
+ ### Additional Information
131
+
132
+ #### Dataset Curators
133
+
134
+ This version of the dataset was curated by [rpmon], based on the original FMA dataset created by Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson.
135
+
136
+ #### Licensing Information
137
+
138
+ The dataset is released under Creative Commons licenses. Individual tracks may have different Creative Commons licenses. Please refer to the original FMA dataset for specific license information.
139
+
140
+ #### Citation Information
141
+
142
+ If you use this dataset, please cite the original FMA paper:
143
+
144
+ ```
145
+ @inproceedings{defferrard2017fma,
146
+ title={FMA: A Dataset for Music Analysis},
147
+ author={Defferrard, Michal and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier},
148
+ booktitle={18th International Society for Music Information Retrieval Conference},
149
+ year={2017}
150
+ }
151
+ ```
152
+
153
+ ### Usage Examples
154
+
155
+ ```python
156
+ from datasets import load_dataset
157
+
158
+ # Load the dataset
159
+ dataset = load_dataset("rpmon/fma-genre-classification")
160
+
161
+ # Access training data
162
+ train_data = dataset['train']
163
+
164
+ # Get an audio sample and its genre
165
+ audio = train_data[0]['audio']
166
+ genre = train_data[0]['genre']
167
+
168
+ # Process with AST feature extractor
169
+ from transformers import ASTFeatureExtractor
170
+ feature_extractor = ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
171
+ inputs = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt")
172
+ ```