|
import os |
|
import os.path as osp |
|
import pathlib |
|
import open3d as o3d |
|
import numpy as np |
|
import pandas as pd |
|
import zarr |
|
import pickle |
|
import tqdm |
|
|
|
|
|
|
|
def _get_groups_df(samples_group): |
|
rows = dict() |
|
for key, group in samples_group.items(): |
|
rows[key] = group.attrs.asdict() |
|
groups_df = pd.DataFrame(data=list(rows.values()), index=rows.keys()) |
|
groups_df.drop_duplicates(inplace=True) |
|
groups_df['group_key'] = groups_df.index |
|
return groups_df |
|
|
|
|
|
class VRFoldingDatasetExample: |
|
def __init__(self, |
|
|
|
zarr_path: str, |
|
num_pc_sample: int = 4000, |
|
num_views: int = 4, |
|
only_foreground_pc: bool = True, |
|
vis=False, |
|
|
|
**kwargs): |
|
""" |
|
simple dataset class to handle data in .zarr format |
|
""" |
|
super().__init__() |
|
path = pathlib.Path(os.path.expanduser(zarr_path)) |
|
assert(path.exists()) |
|
self.zarr_path = str(path.absolute()) |
|
root = zarr.open(self.zarr_path, mode='r') |
|
samples_group = root['samples'] |
|
|
|
|
|
_, sample_group = next(samples_group.groups()) |
|
print(sample_group.tree()) |
|
|
|
|
|
groups_df = _get_groups_df((samples_group)) |
|
|
|
assert(groups_df.index.is_monotonic_increasing) |
|
groups_df['idx'] = np.arange(len(groups_df)) |
|
|
|
|
|
self.samples_group = samples_group |
|
self.groups_df = groups_df |
|
|
|
self.num_pc_sample = num_pc_sample |
|
self.num_views = num_views |
|
self.only_foreground_pc = only_foreground_pc |
|
self.vis = vis |
|
|
|
|
|
video_info_path = self.zarr_path |
|
|
|
self.find_video_idxs(video_info_path) |
|
|
|
self.find_valid_grip_intervals(video_info_path) |
|
|
|
def find_video_idxs(self, video_seq_cache_dir: str): |
|
os.makedirs(video_seq_cache_dir, exist_ok=True) |
|
cache_path = os.path.join(video_seq_cache_dir, 'video_seq.pkl') |
|
if os.path.exists(cache_path): |
|
print('Loading video sequences cache in {}'.format(cache_path)) |
|
with open(cache_path, 'rb') as f: |
|
self.video_to_idxs_dict, self.idx_to_video_list = pickle.load(f) |
|
else: |
|
data_length = self.__len__() |
|
self.video_to_idxs_dict = dict() |
|
self.idx_to_video_list = [] |
|
print('Finding video sequences...') |
|
for idx in tqdm.tqdm(range(data_length), ncols=0): |
|
dataset_idx = idx |
|
row = self.groups_df.iloc[dataset_idx] |
|
group = self.samples_group[row.group_key] |
|
attrs = group.attrs.asdict() |
|
video_id = attrs['video_id'] |
|
if video_id not in self.video_to_idxs_dict: |
|
self.video_to_idxs_dict[video_id] = [] |
|
self.video_to_idxs_dict[video_id].append(idx) |
|
self.idx_to_video_list.append(video_id) |
|
print('Finish finding video sequences!') |
|
with open(cache_path, 'wb') as f: |
|
pickle.dump((self.video_to_idxs_dict, self.idx_to_video_list), f) |
|
print('Saving video sequences cache to {}'.format(cache_path)) |
|
|
|
def find_valid_grip_intervals(self, video_seq_cache_dir: str): |
|
os.makedirs(video_seq_cache_dir, exist_ok=True) |
|
def is_valid_grip(grip_vertex_ids): |
|
return grip_vertex_ids[0] != -1 |
|
cache_path = os.path.join(video_seq_cache_dir, 'video_grip_interval_v2.pkl') |
|
if os.path.exists(cache_path): |
|
print('Loading video grip interval cache in {}'.format(cache_path)) |
|
with open(cache_path, 'rb') as f: |
|
self.interval_to_idxs_dict, self.idx_to_interval_list = pickle.load(f) |
|
else: |
|
data_length = self.__len__() |
|
self.interval_to_idxs_dict = dict() |
|
self.idx_to_interval_list = [] |
|
assert self.video_to_idxs_dict is not None |
|
print('Finding video valid grip intervals...') |
|
in_interval = False |
|
interval_count = 0 |
|
for idx in tqdm.tqdm(range(data_length), ncols=0): |
|
dataset_idx = idx |
|
row = self.groups_df.iloc[dataset_idx] |
|
group = self.samples_group[row.group_key] |
|
attrs = group.attrs.asdict() |
|
video_id = attrs['video_id'] |
|
grip_point_group = group['grip_vertex_id'] |
|
left_grip_vertex_ids = grip_point_group['left_grip_vertex_id'][:] |
|
right_grip_vertex_ids = grip_point_group['right_grip_vertex_id'][:] |
|
if not in_interval and (is_valid_grip(left_grip_vertex_ids) or is_valid_grip(right_grip_vertex_ids)): |
|
|
|
self.interval_to_idxs_dict[interval_count] = [] |
|
in_interval = True |
|
|
|
if in_interval: |
|
self.interval_to_idxs_dict[interval_count].append(idx) |
|
self.idx_to_interval_list.append(interval_count) |
|
else: |
|
self.idx_to_interval_list.append(-1) |
|
|
|
if in_interval and not is_valid_grip(left_grip_vertex_ids) and not is_valid_grip(right_grip_vertex_ids) \ |
|
or self.video_to_idxs_dict[video_id][-1] == idx: |
|
|
|
in_interval = False |
|
interval_count += 1 |
|
print('Finish finding {} valid grip intervals!'.format(interval_count)) |
|
with open(cache_path, 'wb') as f: |
|
pickle.dump((self.interval_to_idxs_dict, self.idx_to_interval_list), f) |
|
print('Saving grip interval cache to {}'.format(cache_path)) |
|
|
|
def __len__(self): |
|
return len(self.groups_df) |
|
|
|
def data_io(self, idx: int) -> dict: |
|
dataset_idx = idx |
|
row = self.groups_df.iloc[dataset_idx] |
|
group = self.samples_group[row.group_key] |
|
|
|
|
|
attrs = group.attrs.asdict() |
|
instance_id = attrs['instance_id'] |
|
scale = attrs['scale'] |
|
pc_group = group['point_cloud'] |
|
mesh_group = group['mesh'] |
|
grip_point_group = group['grip_vertex_id'] |
|
hand_pose_group = group['hand_pose'] |
|
if 'cls' in pc_group: |
|
pc_cls = pc_group['cls'][:] |
|
pc_cls[pc_cls > 0] = 1 |
|
else: |
|
pc_cls = np.zeros(pc_group['point'][:].shape[0]).astype(np.uint8) |
|
data = { |
|
'cloth_sim_verts': mesh_group['cloth_verts'][:], |
|
'cloth_nocs_verts': mesh_group['cloth_nocs_verts'][:], |
|
'cloth_faces_tri': mesh_group['cloth_faces_tri'][:], |
|
'pc_nocs': pc_group['nocs'][:], |
|
'pc_sim': pc_group['point'][:], |
|
'pc_sim_rgb': pc_group['rgb'][:], |
|
'pc_sizes': pc_group['sizes'][:], |
|
'pc_cls': pc_cls, |
|
'left_grip_vertex_ids': grip_point_group['left_grip_vertex_id'][:], |
|
'right_grip_vertex_ids': grip_point_group['right_grip_vertex_id'][:], |
|
'left_hand_pos': hand_pose_group['left_hand_pos'][:], |
|
'right_hand_pos': hand_pose_group['right_hand_pos'][:], |
|
'left_hand_euler': hand_pose_group['left_hand_euler'][:], |
|
'right_hand_euler': hand_pose_group['right_hand_euler'][:], |
|
'video_id': attrs['video_id'], |
|
'scale': scale |
|
} |
|
|
|
return data |
|
|
|
def get_base_data(self, idx:int, seed:int, data_in: dict) -> dict: |
|
num_pc_sample = self.num_pc_sample |
|
num_views = self.num_views |
|
if self.only_foreground_pc: |
|
foreground_idxs = data_in['pc_cls'] == 0 |
|
if data_in['pc_cls'].shape[0] != data_in['pc_sim_rgb'].shape[0]: |
|
foreground_idxs = np.arange(data_in['pc_sim_rgb'].shape[0]) |
|
data_in['pc_sim_rgb'] = data_in['pc_sim_rgb'][foreground_idxs] |
|
data_in['pc_sim'] = data_in['pc_sim'][foreground_idxs] |
|
data_in['pc_nocs'] = data_in['pc_nocs'][foreground_idxs] |
|
data_in['pc_cls'] = data_in['pc_cls'][foreground_idxs] |
|
|
|
rs = np.random.RandomState(seed=seed) |
|
all_idxs = np.arange(len(data_in['pc_sim'])) |
|
all_num_views = len(data_in['pc_sizes']) |
|
if num_views < all_num_views: |
|
idxs_mask = np.zeros_like(all_idxs, dtype=np.bool) |
|
selected_view_idxs = np.sort(rs.choice(all_num_views, size=num_views, replace=False)) |
|
view_idxs = np.concatenate([[0], np.cumsum(data_in['pc_sizes'])]) |
|
for i in selected_view_idxs: |
|
idxs_mask[view_idxs[i]: view_idxs[i+1]] = True |
|
all_idxs = all_idxs[idxs_mask] |
|
|
|
if all_idxs.shape[0] >= num_pc_sample: |
|
selected_idxs = rs.choice(all_idxs, size=num_pc_sample, replace=False) |
|
else: |
|
np.random.seed(seed) |
|
np.random.shuffle(all_idxs) |
|
res_num = len(all_idxs) - num_pc_sample |
|
selected_idxs = np.concatenate([all_idxs, all_idxs[:res_num]], axis=0) |
|
|
|
pc_sim_rgb = data_in['pc_sim_rgb'][selected_idxs].astype(np.float32) / 255 |
|
pc_sim = data_in['pc_sim'][selected_idxs].astype(np.float32) |
|
pc_nocs = data_in['pc_nocs'][selected_idxs].astype(np.float32) |
|
pc_cls = data_in['pc_cls'][selected_idxs].astype(np.int64) |
|
pc_nocs[pc_cls != 0, :] = -1.0 |
|
|
|
dataset_idx = np.array([idx]) |
|
video_id = np.array([int(data_in['video_id'])]) |
|
scale = np.array([data_in['scale']]) |
|
|
|
cloth_sim_verts = data_in['cloth_sim_verts'] |
|
cloth_nocs_verts = data_in['cloth_nocs_verts'] |
|
left_grip_vertex_ids = data_in['left_grip_vertex_ids'] |
|
right_grip_vertex_ids = data_in['right_grip_vertex_ids'] |
|
left_grip_point_sim = np.array([-10., -10., -10.], dtype=np.float32) |
|
right_grip_point_sim = np.array([-10., -10., -10.], dtype=np.float32) |
|
left_grip_point_nocs = np.array([-2., -2., -2.], dtype=np.float32) |
|
right_grip_point_nocs = np.array([-2., -2., -2.], dtype=np.float32) |
|
is_left_hand_valid_grasp = False |
|
is_right_hand_valid_grasp = False |
|
for hand_id, grip_vertex_ids in enumerate((left_grip_vertex_ids, right_grip_vertex_ids)): |
|
if grip_vertex_ids[0] != -1: |
|
|
|
grip_vertices_sim = cloth_sim_verts[grip_vertex_ids, :] |
|
mean_grip_point_sim = np.mean(grip_vertices_sim, axis=0) |
|
grip_vertices_nocs = cloth_nocs_verts[grip_vertex_ids, :] |
|
mean_grip_point_nocs = np.mean(grip_vertices_nocs, axis=0) |
|
if hand_id == 0: |
|
left_grip_point_sim = mean_grip_point_sim.astype(np.float32) |
|
left_grip_point_nocs = mean_grip_point_nocs.astype(np.float32) |
|
is_left_hand_valid_grasp = True |
|
else: |
|
right_grip_point_sim = mean_grip_point_sim.astype(np.float32) |
|
right_grip_point_nocs = mean_grip_point_nocs.astype(np.float32) |
|
is_right_hand_valid_grasp = True |
|
|
|
data = { |
|
'x': pc_sim_rgb, |
|
'y': pc_nocs, |
|
'pos': pc_sim, |
|
'cls': pc_cls, |
|
'dataset_idx': dataset_idx, |
|
'video_id': video_id, |
|
'left_grip_point_sim': left_grip_point_sim, |
|
'left_grip_point_nocs': left_grip_point_nocs, |
|
'right_grip_point_sim': right_grip_point_sim, |
|
'right_grip_point_nocs': right_grip_point_nocs, |
|
'scale': scale |
|
} |
|
|
|
if self.vis: |
|
vis_list = [] |
|
pc_rgb_sim_pcd = o3d.geometry.PointCloud() |
|
pc_rgb_sim_pcd.points = o3d.utility.Vector3dVector(pc_sim) |
|
pc_rgb_sim_pcd.colors = o3d.utility.Vector3dVector(pc_sim_rgb) |
|
vis_list.append(pc_rgb_sim_pcd) |
|
|
|
mesh_sim_pcd = o3d.geometry.PointCloud() |
|
mesh_sim_pcd.points = o3d.utility.Vector3dVector(cloth_sim_verts) |
|
mesh_sim_pcd.colors = o3d.utility.Vector3dVector(cloth_nocs_verts) |
|
vis_list.append(mesh_sim_pcd.translate((0.8, 0., 0.))) |
|
|
|
if is_left_hand_valid_grasp: |
|
left_grasp_sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.05) |
|
left_grasp_sphere.paint_uniform_color([0.9, 0.1, 0.1]) |
|
left_grasp_sphere = left_grasp_sphere.translate(left_grip_point_sim) |
|
vis_list.append(left_grasp_sphere) |
|
|
|
if is_right_hand_valid_grasp: |
|
right_grasp_sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.05) |
|
right_grasp_sphere.paint_uniform_color([0.1, 0.1, 0.9]) |
|
right_grasp_sphere = right_grasp_sphere.translate(right_grip_point_sim) |
|
vis_list.append(right_grasp_sphere) |
|
|
|
|
|
vis = o3d.visualization.Visualizer() |
|
vis.create_window(window_name='Press q or Esc to quit', width=1640, height=1080) |
|
for item in vis_list: |
|
vis.add_geometry(item) |
|
vis.get_render_option().load_from_json(osp.join(osp.curdir, 'render_option.json')) |
|
param = o3d.io.read_pinhole_camera_parameters(osp.join(os.getcwd(), 'view_point.json')) |
|
vis.get_view_control().convert_from_pinhole_camera_parameters(param) |
|
vis.run() |
|
param = vis.get_view_control().convert_to_pinhole_camera_parameters() |
|
o3d.io.write_pinhole_camera_parameters(osp.join(os.getcwd(), 'view_point.json'), param) |
|
vis.close() |
|
|
|
return data |
|
|
|
def __getitem__(self, idx: int) -> dict: |
|
raw_data = self.data_io(idx) |
|
input_data = self.get_base_data(idx, seed=idx, data_in=raw_data) |
|
return input_data |
|
|
|
if __name__=='__main__': |
|
os.chdir(osp.dirname(osp.realpath(__file__))) |
|
zarr_path = osp.join(osp.dirname(osp.realpath(__file__)), 'VR_Folding', 'vr_simulation_folding_dataset_example.zarr', 'Tshirt') |
|
print(zarr_path) |
|
dataset = VRFoldingDatasetExample(zarr_path=zarr_path, vis=True) |
|
for i in range(len(dataset)): |
|
if dataset.idx_to_interval_list[i] == -1: |
|
|
|
continue |
|
data = dataset[i] |
|
video_id = data['video_id'] |
|
print(f'Reading sample {i}, video {video_id}! Press q or Esc on the window to quit visualization of current frame!') |
|
|