MLe-SNLI / README.md
rish16's picture
Update README.md
af8809c
metadata
license: mit

Multilingual e-SNLI (MLe-SNLI)

In this repo, we provide the training, validation, and testing sets for Multilingual e-SNLI (MLe-SNLI). For more details, find our report here.

Dataset details

MLe-SNLI contains 500K training (train) samples of premise-hypothesis pairs along with their associated label and explanation. We take 100K training samples from the original e-SNLI (Camburu et al., 2018) dataset and translate them into 4 other languages (Spanish, German, Dutch, and French). We do the same for all 9824 testing (test) and validation (dev) samples, giving us 49120 samples for both test and dev splits.

Column Description
premise Natural language premise sentence
hypothesis Natural language hypothesis sentence
label From entailment, contradiction, or neutral
explanation_1 Natural language justification for label
language From English (en), Spanish (es), German (de), Dutch (nl), French (fr)

WARNING: the translation quality of MLe-SNLI may be compromised for some natural language samples because of quality issues in the original e-SNLI dataset that were not addressed in our work. Use it at your own discretion.

Download Instructions

To access MLe-SNLI, you can use the HuggingFace Datasets API to load the dataset:

from datasets import load_dataset

mle_snli = load_dataset("rish16/MLe-SNLI") # loads a DatasetDict object

train_data = mle_snli['train'] # 500K samples (100K per lang)
dev_data = mle_snli['dev'] # 49120 samples (9824 per lang)
test_data = mle_snli['test'] # 49120 samples (9824 per lang)

print (mle_snli)
"""
DatasetDict({
    train: Dataset({
        features: ['premise', 'hypothesis', 'label', 'explanation_1', 'language'],
        num_rows: 500000
    })
    test: Dataset({
        features: ['premise', 'hypothesis', 'label', 'explanation_1', 'language'],
        num_rows: 49120
    })
    validation: Dataset({
        features: ['premise', 'hypothesis', 'label', 'explanation_1', 'language'],
        num_rows: 49210
    })
})
"""