env / svc_cn_hubert_soft_finetune.py
rinflan's picture
Upload 2 files
2bb6707
raw
history blame
1.94 kB
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from fish_diffusion.datasets.audio_folder import AudioFolderDataset
_base_ = [
"./_base_/archs/diff_svc_v2.py",
"./_base_/trainers/base.py",
"./_base_/schedulers/warmup_cosine_finetune.py",
"./_base_/datasets/audio_folder.py",
]
speaker_mapping = {
"Placeholder": 0,
}
dataset = dict(
train=dict(
_delete_=True, # Delete the default train dataset
type="ConcatDataset",
datasets=[
dict(
type="AudioFolderDataset",
path="dataset/train",
speaker_id=speaker_mapping["Placeholder"],
),
],
# Are there any other ways to do this?
collate_fn=AudioFolderDataset.collate_fn,
),
valid=dict(
_delete_=True, # Delete the default valid dataset
type="ConcatDataset",
datasets=[
dict(
type="AudioFolderDataset",
path="dataset/valid",
speaker_id=speaker_mapping["Placeholder"],
),
],
collate_fn=AudioFolderDataset.collate_fn,
),
)
model = dict(
speaker_encoder=dict(
input_size=len(speaker_mapping),
),
text_encoder=dict(
type="NaiveProjectionEncoder",
input_size=256,
output_size=256,
),
)
preprocessing = dict(
text_features_extractor=dict(
type="ChineseHubertSoft",
pretrained=True,
gate_size=25,
),
pitch_extractor=dict(
type="ParselMouthPitchExtractor",
),
)
# The following trainer val and save checkpoints every 1000 steps
trainer = dict(
val_check_interval=1000,
callbacks=[
ModelCheckpoint(
filename="{epoch}-{step}-{valid_loss:.2f}",
every_n_train_steps=5000,
save_top_k=-1,
),
LearningRateMonitor(logging_interval="step"),
],
)