|
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint |
|
|
|
from fish_diffusion.datasets.audio_folder import AudioFolderDataset |
|
|
|
_base_ = [ |
|
"./_base_/archs/diff_svc_v2.py", |
|
"./_base_/trainers/base.py", |
|
"./_base_/schedulers/warmup_cosine_finetune.py", |
|
"./_base_/datasets/audio_folder.py", |
|
] |
|
|
|
speaker_mapping = { |
|
"Placeholder": 0, |
|
} |
|
|
|
dataset = dict( |
|
train=dict( |
|
_delete_=True, |
|
type="ConcatDataset", |
|
datasets=[ |
|
dict( |
|
type="AudioFolderDataset", |
|
path="dataset/train", |
|
speaker_id=speaker_mapping["Placeholder"], |
|
), |
|
], |
|
|
|
collate_fn=AudioFolderDataset.collate_fn, |
|
), |
|
valid=dict( |
|
_delete_=True, |
|
type="ConcatDataset", |
|
datasets=[ |
|
dict( |
|
type="AudioFolderDataset", |
|
path="dataset/valid", |
|
speaker_id=speaker_mapping["Placeholder"], |
|
), |
|
], |
|
collate_fn=AudioFolderDataset.collate_fn, |
|
), |
|
) |
|
|
|
model = dict( |
|
speaker_encoder=dict( |
|
input_size=len(speaker_mapping), |
|
), |
|
text_encoder=dict( |
|
type="NaiveProjectionEncoder", |
|
input_size=256, |
|
output_size=256, |
|
), |
|
) |
|
|
|
preprocessing = dict( |
|
text_features_extractor=dict( |
|
type="ChineseHubertSoft", |
|
pretrained=True, |
|
gate_size=25, |
|
), |
|
pitch_extractor=dict( |
|
type="ParselMouthPitchExtractor", |
|
), |
|
) |
|
|
|
|
|
trainer = dict( |
|
val_check_interval=1000, |
|
callbacks=[ |
|
ModelCheckpoint( |
|
filename="{epoch}-{step}-{valid_loss:.2f}", |
|
every_n_train_steps=5000, |
|
save_top_k=-1, |
|
), |
|
LearningRateMonitor(logging_interval="step"), |
|
], |
|
) |
|
|