Datasets:
Languages:
Sundanese
Tags:
speech-recognition
import csv | |
import os | |
from typing import Dict, List | |
import datasets | |
from seacrowd.utils import schemas | |
from seacrowd.utils.configs import SEACrowdConfig | |
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, | |
DEFAULT_SOURCE_VIEW_NAME, Tasks) | |
_DATASETNAME = "su_id_asr" | |
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME | |
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME | |
_LANGUAGES = ["sun"] | |
_LOCAL = False | |
_CITATION = """\ | |
@inproceedings{sodimana18_sltu, | |
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha}, | |
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}}, | |
year=2018, | |
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)}, | |
pages={66--70}, | |
doi={10.21437/SLTU.2018-14} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Sundanese ASR training data set containing ~220K utterances. | |
This dataset was collected by Google in Indonesia. | |
""" | |
_HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr" | |
_LICENSE = "Attribution-ShareAlike 4.0 International." | |
_URLs = { | |
"su_id_asr_train": "https://univindonesia-my.sharepoint.com/:u:/g/personal/bimasena_putra_office_ui_ac_id/EdJMdFZbSp5LlAT0TEP2fvcB38OHB1hIRslTpCs-wTrJMA?e=jfK6xC&download=1", | |
"su_id_asr_dev": "https://univindonesia-my.sharepoint.com/:u:/g/personal/bimasena_putra_office_ui_ac_id/Efe8LnwT8KtOjJybXjOQdFwBso5RBp39SwGGWsEbindXDQ?e=IFIN6J&download=1", | |
"su_id_asr_test": "https://univindonesia-my.sharepoint.com/:u:/g/personal/bimasena_putra_office_ui_ac_id/EfjvnrniV_hKmrSMY0XYvt8BXiXx5SNxt5mhfLiMw0dExw?e=zGCjc5&download=1", | |
} | |
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] | |
_SOURCE_VERSION = "1.0.0" | |
_SEACROWD_VERSION = "2024.06.20" | |
class SuIdASR(datasets.GeneratorBasedBuilder): | |
"""su_id contains ~220K utterances for Sundanese ASR training data.""" | |
BUILDER_CONFIGS = [ | |
SEACrowdConfig( | |
name="su_id_asr_source", | |
version=datasets.Version(_SOURCE_VERSION), | |
description="SU_ID_ASR source schema", | |
schema="source", | |
subset_id="su_id_asr", | |
), | |
SEACrowdConfig( | |
name="su_id_asr_seacrowd_sptext", | |
version=datasets.Version(_SEACROWD_VERSION), | |
description="SU_ID_ASR Nusantara schema", | |
schema="seacrowd_sptext", | |
subset_id="su_id_asr", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "su_id_asr_source" | |
def _info(self): | |
if self.config.schema == "source": | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"speaker_id": datasets.Value("string"), | |
"path": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=16_000), | |
"text": datasets.Value("string"), | |
} | |
) | |
elif self.config.schema == "seacrowd_sptext": | |
features = schemas.speech_text_features | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], | |
) | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_train"])}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_dev"])}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_test"])}, | |
) | |
] | |
def _generate_examples(self, filepath: str): | |
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext": | |
tsv_file = os.path.join(filepath, "asr_sundanese", "utt_spk_text.tsv") | |
with open(tsv_file, "r") as file: | |
tsv_file = csv.reader(file, delimiter="\t") | |
for line in tsv_file: | |
audio_id, speaker_id, transcription_text = line[0], line[1], line[2] | |
wav_path = os.path.join(filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id)) | |
if os.path.exists(wav_path): | |
if self.config.schema == "source": | |
ex = { | |
"id": audio_id, | |
"speaker_id": speaker_id, | |
"path": wav_path, | |
"audio": wav_path, | |
"text": transcription_text, | |
} | |
yield audio_id, ex | |
elif self.config.schema == "seacrowd_sptext": | |
ex = { | |
"id": audio_id, | |
"speaker_id": speaker_id, | |
"path": wav_path, | |
"audio": wav_path, | |
"text": transcription_text, | |
"metadata": { | |
"speaker_age": None, | |
"speaker_gender": None, | |
}, | |
} | |
yield audio_id, ex | |
else: | |
raise ValueError(f"Invalid config: {self.config.name}") |