dcase23-task2-enriched / dcase23-task2-enriched.py
sps44's picture
streaming flag
fe76bcc
raw
history blame
15.6 kB
import os
import json
import datasets
import datasets.info
import pandas as pd
import numpy as np
import tempfile
import requests
import io
from pathlib import Path
from datasets import load_dataset
from typing import Iterable, Dict, Optional, Union, List
_CITATION = """\
@dataset{kota_dohi_2023_7687464,
author = {Kota Dohi and
Keisuke and
Noboru and
Daisuke and
Yuma and
Tomoya and
Harsh and
Takashi and
Yohei},
title = {DCASE 2023 Challenge Task 2 Development Dataset},
month = mar,
year = 2023,
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.7687464},
url = {https://doi.org/10.5281/zenodo.7687464}
}
"""
_LICENSE = "Creative Commons Attribution 4.0 International Public License"
_METADATA_REG = r"attributes_\d+.csv"
_NUM_TARGETS = 2
_NUM_CLASSES = 7
_TARGET_NAMES = ["normal", "anomaly"]
_CLASS_NAMES = ["gearbox", "fan", "bearing", "slider", "ToyCar", "ToyTrain", "valve"]
_HOMEPAGE = {
"dev": "https://zenodo.org/record/7687464#.Y_96q9LMLmH",
"add": "",
"eval": "",
}
DATA_URLS = {
"dev": {
"train": "data/dev_train.tar.gz",
"test": "data/dev_test.tar.gz",
"metadata": "data/dev_metadata_extended.csv",
},
"add": {
"train": "data/add_train.tar.gz",
"test": "data/add_test.tar.gz",
"metadata": "data/add_metadata_extended.csv",
},
"eval": {
"test": "data/eval_test.tar.gz",
"metadata": "data/eval_metadata_extended.csv",
},
}
EMBEDDING_URLS = {
"dev": {
"embeddings_ast-finetuned-audioset-10-10-0.4593": {
"train": "data/MIT_ast-finetuned-audioset-10-10-0-4593-embeddings_dev_train.npz",
"test": "data/MIT_ast-finetuned-audioset-10-10-0-4593-embeddings_dev_test.npz",
"size": (1, 768),
"dtype": "float32",
},
},
"add": {
"embeddings_ast-finetuned-audioset-10-10-0.4593": {
"train": "",
"test": "",
},
},
"eval": {
"embeddings_ast-finetuned-audioset-10-10-0.4593": {
"train": "",
"test": "",
},
},
}
STATS = {
"name": "Enriched Dataset of 'DCASE 2023 Challenge Task 2'",
"configs": {
'dev': {
'date': "Mar 1, 2023",
'version': "1.0.0",
'homepage': "https://zenodo.org/record/7687464#.ZABmANLMLmH",
"splits": ["train", "test"],
},
# 'add': {
# 'date': None,
# 'version': "0.0.0",
# 'homepage': None,
# "splits": ["train", "test"],
# },
# 'eval': {
# 'date': None,
# 'version': "0.0.0",
# 'homepage': None,
# "splits": ["test"],
# },
}
}
DATASET = {
'dev': 'DCASE 2023 Challenge Task 2 Development Dataset',
'add': 'DCASE 2023 Challenge Task 2 Additional Train Dataset',
'eval': 'DCASE 2023 Challenge Task 2 Evaluation Dataset',
}
SPOTLIGHT_LAYOUTS = {
"standard": {
"orientation": "vertical",
"children": [
{
"kind": "split",
"weight": 51.96463654223969,
"orientation": "horizontal",
"children": [
{
"kind": "tab",
"weight": 30,
"children": [
{
"kind": "widget",
"name": "Table",
"type": "table",
"config": {
"tableView": "full",
"visibleColumns": [
"class",
"class_name",
"config",
"d1p",
"d1v",
"d2p",
"d2v",
"d3p",
"d3v",
"file_path",
"label",
"section",
"split"
],
"sorting": None,
"orderByRelevance": False
}
}
]
},
{
"kind": "tab",
"weight": 33.970588235294116,
"children": [
{
"kind": "widget",
"name": "Similarity Map (2)",
"type": "similaritymap",
"config": {
"umapNNeighbors": 20,
"umapMinDist": 0.15,
"colorBy": "label"
}
}
]
},
{
"kind": "tab",
"weight": 36.029411764705884,
"children": [
{
"kind": "widget",
"name": "Similarity Map",
"type": "similaritymap",
"config": {
"placeBy": None,
"reductionMethod": None,
"colorBy": "class_name",
"sizeBy": None,
"filter": False,
"umapNNeighbors": 20,
"umapMetric": None,
"umapMinDist": 0.15,
"pcaNormalization": None,
"umapMenuLocalGlobalBalance": None,
"umapMenuIsAdvanced": False
}
},
{
"kind": "widget",
"name": "Scatter Plot",
"type": "scatterplot",
"config": {
"xAxisColumn": None,
"yAxisColumn": None,
"colorBy": None,
"sizeBy": None,
"filter": False
}
},
{
"kind": "widget",
"name": "Histogram",
"type": "histogram",
"config": {
"columnKey": None,
"stackByColumnKey": None,
"filter": False
}
}
]
}
]
},
{
"kind": "tab",
"weight": 48.03536345776031,
"children": [
{
"kind": "widget",
"name": "Inspector",
"type": "inspector",
"config": {
"views": [
{
"view": "AudioView",
"columns": [
"audio"
],
"name": "view",
"key": "9c37fe2d-6305-436b-b944-30dbda7b1f4d"
},
{
"view": "SpectrogramView",
"columns": [
"audio"
],
"name": "view",
"key": "9e676bb9-0b21-4214-806f-4e8c0f6db4c3"
}
],
"visibleColumns": 4
}
}
]
}
]
},
}
SPOTLIGHT_RENAME = {
"audio": "original_audio",
"path": "audio",
}
class DCASE2023Task2DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for DCASE2023Task2Dataset."""
def __init__(self, name, version, **kwargs):
self.release_date = kwargs.pop("release_date", None)
self.homepage = kwargs.pop("homepage", None)
self.data_urls = kwargs.pop("data_urls", None)
self.embeddings_urls = kwargs.pop("embeddings_urls", None)
self.splits = kwargs.pop("splits", None)
self.rename = kwargs.pop("rename", None)
self.layout = kwargs.pop("layout", None)
description = (
f"Dataset for the DCASE 2023 Challenge Task 2 'First-Shot Unsupervised Anomalous Sound Detection "
f"for Machine Condition Monitoring'. released on {self.release_date}. Original data available under"
f"{self.homepage}. "
f"CONFIG: {name}."
)
super(DCASE2023Task2DatasetConfig, self).__init__(
name=name,
version=datasets.Version(version),
description=description,
)
def to_spotlight(self, data: Union[pd.DataFrame, datasets.Dataset]) -> pd.DataFrame:
def get_split(path: str) -> str:
fn = os.path.basename(path)
if "train" in fn:
return "train"
elif "test" in fn:
return "test"
else:
raise NotImplementedError
if type(data) == datasets.Dataset:
# retrieve split
df = data.to_pandas()
df["split"] = data.split._name if "+" not in data.split._name else df["path"].map(get_split)
df["config"] = data.config_name
# get clearnames for classes
class_names = data.features["class"].names
df["class_name"] = df["class"].apply(lambda x: class_names[x])
elif type(data) == pd.DataFrame:
df = data
else:
raise TypeError("type(data) not in Union[pd.DataFrame, datasets.Dataset]")
df["file_path"] = df["path"]
df.rename(columns=self.rename, inplace=True)
return df.copy()
def get_layout(self, config: str = "standard") -> str:
layout_json = tempfile.mktemp(".json")
with open(layout_json, "w") as outfile:
json.dump(self.layout[config], outfile)
return layout_json
class DCASE2023Task2Dataset(datasets.GeneratorBasedBuilder):
"""Dataset for the DCASE 2023 Challenge Task 2 "First-Shot Unsupervised Anomalous Sound Detection
for Machine Condition Monitoring"."""
VERSION = datasets.Version("0.0.4")
DEFAULT_CONFIG_NAME = "dev"
BUILDER_CONFIGS = [
DCASE2023Task2DatasetConfig(
name=key,
version=stats["version"],
dataset=DATASET[key],
homepage=_HOMEPAGE[key],
data_urls=DATA_URLS[key],
embeddings_urls=EMBEDDING_URLS[key],
release_date=stats["date"],
splits=stats["splits"],
layout=SPOTLIGHT_LAYOUTS,
rename=SPOTLIGHT_RENAME,
)
for key, stats in STATS["configs"].items()
]
def _info(self):
features = {
"audio": datasets.Audio(sampling_rate=16_000),
"path": datasets.Value("string"),
"section": datasets.Value("int64"),
"domain": datasets.ClassLabel(num_classes=2, names=["source", "target"]),
"label": datasets.ClassLabel(num_classes=_NUM_TARGETS, names=_TARGET_NAMES),
"class": datasets.ClassLabel(num_classes=_NUM_CLASSES, names=_CLASS_NAMES),
"d1p": datasets.Value("string"),
"d1v": datasets.Value("string"),
"d2p": datasets.Value("string"),
"d2v": datasets.Value("string"),
"d3p": datasets.Value("string"),
"d3v": datasets.Value("string"),
"anomaly_score_dcase2023_task2_baseline_ae": datasets.Value("float32"),
"prediction_dcase2023_task2_baseline_ae": datasets.Value("int64"),
"prediction_correct_dcase2023_task2_baseline_ae": datasets.Value("int64"),
}
if self.config.embeddings_urls is not None:
features.update({
emb_name: [datasets.Value(emb["dtype"])] for emb_name, emb in self.config.embeddings_urls.items()
})
features = datasets.Features(features)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=self.config.description,
features=features,
supervised_keys=datasets.info.SupervisedKeysData("label"),
homepage=self.config.homepage,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(
self,
dl_manager: datasets.DownloadManager
):
"""Returns SplitGenerators."""
dl_manager.download_config.ignore_url_params = True
audio_path = {}
local_extracted_archive = {}
split_type = {"train": datasets.Split.TRAIN, "test": datasets.Split.TEST}
embeddings = {split: dict() for split in split_type}
for split in split_type:
if split in self.config.splits:
audio_path[split] = dl_manager.download(self.config.data_urls[split])
local_extracted_archive[split] = dl_manager.extract(
audio_path[split]) if not dl_manager.is_streaming else None
if self.config.embeddings_urls is not None:
for emb_name, emb_data in self.config.embeddings_urls.items():
downloaded_embeddings = dl_manager.download(emb_data[split])
if dl_manager.is_streaming:
response = requests.get(downloaded_embeddings)
response.raise_for_status()
downloaded_embeddings = io.BytesIO(response.content)
npz_file = np.load(downloaded_embeddings, allow_pickle=True)
embeddings[split][emb_name] = npz_file["arr_0"].item()
return [
datasets.SplitGenerator(
name=split_type[split],
gen_kwargs={
"split": split,
"local_extracted_archive": local_extracted_archive[split],
"audio_files": dl_manager.iter_archive(audio_path[split]),
"embeddings": embeddings[split],
"metadata_file": dl_manager.download_and_extract(self.config.data_urls["metadata"]),
"is_streaming": dl_manager.is_streaming,
},
) for split in split_type if split in self.config.splits
]
def _generate_examples(
self,
split: str,
local_extracted_archive: Union[Dict, List],
audio_files: Optional[Iterable],
embeddings: Optional[Dict],
metadata_file: Optional[str],
is_streaming: Optional[bool],
):
"""Yields examples."""
metadata = pd.read_csv(metadata_file)
data_fields = list(self._info().features.keys())
id_ = 0
for path, f in audio_files:
lookup = Path(path).parent.name + "/" + Path(path).name
if lookup in metadata["path"].values:
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
if is_streaming:
audio = {"path": path, "bytes": f.read()}
else:
audio = {"path": path, "bytes": None}
result = {field: None for field in data_fields}
result.update(metadata[metadata["path"] == lookup].T.squeeze().to_dict())
for emb_key in embeddings.keys():
result[emb_key] = np.asarray(embeddings[emb_key][lookup]).squeeze().tolist()
result["path"] = path
yield id_, {**result, "audio": audio}
id_ += 1
if __name__ == "__main__":
ds = load_dataset("dcase23-task2-enriched.py", "dev", split="train", streaming=True)