|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import pandas as pd |
|
|
|
|
|
df_predicate = pd.read_csv('predicate_manual_check.csv') |
|
df_predicate = df_predicate[df_predicate['remove (noisy)'] != 'x'] |
|
df_predicate = df_predicate[df_predicate['remove (too vague)'] != 'x'] |
|
predicate_main = df_predicate[df_predicate['ok'] == 'x']['unique predicates'].tolist() |
|
df_sub = df_predicate[df_predicate['ok'] != 'x'] |
|
df_sub_same = df_sub[['unique predicates', 'same as']].dropna() |
|
df_sub_same = df_sub_same[[i in predicate_main for i in df_sub_same['same as']]] |
|
df_sub_same.index = df_sub_same.pop('unique predicates') |
|
sub_same = df_sub_same['same as'].to_dict() |
|
df_sub_rev = df_sub[['unique predicates', 'reverse of']].dropna() |
|
df_sub_rev = df_sub_rev[[i in predicate_main for i in df_sub_rev['reverse of']]] |
|
df_sub_rev.index = df_sub_rev.pop('unique predicates') |
|
sub_rev = df_sub_rev['reverse of'].to_dict() |
|
|
|
|
|
with open(f"data/t_rex.filter.jsonl") as f: |
|
data = pd.DataFrame([json.loads(i) for i in f.read().split('\n') if len(i) > 0]) |
|
data['predicate'] = [sub_same[i] if i in sub_same else i for i in data['predicate']] |
|
data['reverse'] = [i in sub_rev for i in data['predicate']] |
|
data['predicate'] = [sub_rev[i] if i in sub_rev else i for i in data['predicate']] |
|
data_filter = data[[i in predicate_main for i in data['predicate']]] |
|
|
|
data_filter_rev = data_filter[data_filter['reverse']].copy() |
|
o = data_filter_rev.pop("object") |
|
s = data_filter_rev.pop("subject") |
|
data_filter_rev["subject"] = o |
|
data_filter_rev["object"] = s |
|
data_filter[data_filter['reverse']] = data_filter_rev[data_filter.columns] |
|
data_filter.pop("reverse") |
|
|
|
df_main = df_predicate[df_predicate['ok'] == 'x'][['unique predicates', 'pretty relation name', 'pretty relation name is reverse']] |
|
df_main['reverse'] = [i == 'x' for i in df_main.pop('pretty relation name is reverse')] |
|
df_main['predicate'] = df_main.pop('unique predicates') |
|
|
|
data_filter_join = data_filter.merge(df_main, how='inner', on='predicate') |
|
data_filter_join_rev = data_filter_join[data_filter_join['reverse']].copy() |
|
o = data_filter_join_rev.pop("object") |
|
s = data_filter_join_rev.pop("subject") |
|
data_filter_join_rev["subject"] = o |
|
data_filter_join_rev["object"] = s |
|
data_filter_join[data_filter_join['reverse']] = data_filter_join_rev[data_filter_join.columns] |
|
data_filter_join.pop("reverse") |
|
data_filter_join.pop("predicate") |
|
data_filter_join['predicate'] = data_filter_join.pop("pretty relation name") |
|
|
|
print(f"[after] : {len(data_filter_join)}") |
|
print(f"[entity]: {len(set(data_filter_join['object'].unique().tolist() + data_filter_join['subject'].unique().tolist()))}") |
|
print(f"[predicate]: {len(data_filter_join['predicate'].unique())}") |
|
|
|
|
|
data = [i.to_dict() for _, i in data_filter_join.iterrows()] |
|
with open(f"data/t_rex.filter_unified.jsonl", 'w') as f: |
|
f.write('\n'.join([json.dumps(i) for i in data])) |
|
|