Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
t_rex / stats.py
asahi417's picture
init
79543d6
raw
history blame
6.33 kB
import json
from itertools import product
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from datasets import Dataset
sns.set_theme(style="whitegrid")
# load filtered data
tmp = []
for s in ['train', 'validation', 'test']:
with open(f"data/t_rex.filter.{s}.jsonl") as f:
tmp += [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
data = Dataset.from_list(tmp)
df_main = data.to_pandas()
def is_entity(token):
return any(i.isupper() for i in token)
def filtering(row, min_freq: int = 3, target: str = "subject"):
if not row['is_entity']:
return True
return row[target] >= min_freq
def main(min_entity_freq, max_pairs_predicate, min_pairs_predicate: int = 1,
return_stats: bool = True, random_sampling: bool = True):
df = df_main.copy()
# entity frequency filter
c_sub = df.groupby("subject")['title'].count()
c_obj = df.groupby("object")['title'].count()
key = set(list(c_sub.index) + list(c_obj.index))
count = pd.DataFrame([{'entity': k, "subject": c_sub[k] if k in c_sub else 0, "object": c_obj[k] if k in c_obj else 0} for k in key])
count.index = count.pop('entity')
count['is_entity'] = [is_entity(i) for i in count.index]
count['sum'] = count['subject'] + count['object']
count_filter_sub = count[count.apply(lambda x: filtering(x, min_freq=min_entity_freq, target='subject'), axis=1)]['subject']
count_filter_obj = count[count.apply(lambda x: filtering(x, min_freq=min_entity_freq, target='object'), axis=1)]['object']
vocab_sub = set(count_filter_sub.index)
vocab_obj = set(count_filter_obj.index)
df['flag_subject'] = [i in vocab_sub for i in df['subject']]
df['flag_object'] = [i in vocab_obj for i in df['object']]
df['flag'] = df['flag_subject'] & df['flag_object']
df_filter = df[df['flag']]
df_filter.pop("flag")
df_filter.pop("flag_subject")
df_filter.pop("flag_object")
df_filter['count_subject'] = [count_filter_sub.loc[i] for i in df_filter['subject']]
df_filter['count_object'] = [count_filter_obj.loc[i] for i in df_filter['object']]
df_filter['count_sum'] = df_filter['count_subject'] + df_filter['count_object']
# predicate frequency filter
if random_sampling:
df_balanced = pd.concat(
[g if len(g) <= max_pairs_predicate else g.sample(max_pairs_predicate, random_state=0) for _, g in
df_filter.groupby("predicate") if len(g) >= min_pairs_predicate])
else:
df_balanced = pd.concat(
[g if len(g) <= max_pairs_predicate else g.sort_values(by='count_sum', ascending=False).head(max_pairs_predicate) for _, g in
df_filter.groupby("predicate") if len(g) >= min_pairs_predicate])
if not return_stats:
df_balanced.pop("count_subject")
df_balanced.pop("count_object")
df_balanced.pop("count_sum")
return [i.to_dict() for _, i in df_balanced]
# return distribution
predicate_dist = df_balanced.groupby("predicate")['text'].count().sort_values(ascending=False).to_dict()
entity, count = np.unique(df_balanced['object'].tolist() + df_balanced['subject'].tolist(), return_counts=True)
entity_dist = dict(list(zip(entity.tolist(), count.tolist())))
return predicate_dist, entity_dist, len(df_balanced)
if __name__ == '__main__':
p_dist_full = []
e_dist_full = []
data_size_full = []
config = []
candidates = list(product([1, 2, 3, 4], [100, 50, 25, 10]))
# run filtering with different configs
for min_e_freq, max_p_freq in candidates:
p_dist, e_dist, data_size = main(min_entity_freq=min_e_freq, max_pairs_predicate=max_p_freq)
p_dist_full.append(p_dist)
e_dist_full.append(e_dist)
data_size_full.append(data_size)
config.append([min_e_freq, max_p_freq])
# check statistics
print("- Data Size")
df_size = pd.DataFrame([{"min entity": mef, "max predicate": mpf, "freq": x} for x, (mef, mpf) in zip(data_size_full, candidates)])
df_size = df_size.pivot(index="min entity", columns="max predicate", values="freq")
df_size.index.name = "min entity / max predicate"
df_size.to_csv("data/stats.data_size.csv")
print(df_size.to_markdown())
df_size = pd.DataFrame(
[{"min entity": mef, "max predicate": mpf, "freq": len(x)} for x, (mef, mpf) in zip(p_dist_full, candidates)])
df_size = df_size.pivot(index="min entity", columns="max predicate", values="freq")
df_size.index.name = "min entity / max predicate"
df_size.to_csv("data/stats.predicate_size.csv")
print(df_size.to_markdown())
# plot predicate distribution
df_p = pd.DataFrame([dict(enumerate(sorted(p.values(), reverse=True))) for p in p_dist_full]).T
df_p.columns = [f"min entity: {mef}, max predicate: {mpf}" for mef, mpf in candidates]
fig = plt.figure()
_df_p = df_p[[f"min entity: {mef}, max predicate: 10" for mef in [1, 2, 3, 4]]]
_df_p.columns = [f"min entity: {mef}" for mef in [1, 2, 3, 4]]
ax = sns.lineplot(data=_df_p, linewidth=2.5)
ax.set(xlabel='unique predicates sorted by frequency', ylabel='number of triples', title='Predicate Distribution (max predicate: 10)')
ax.get_figure().savefig("data/stats.predicate_distribution.png", bbox_inches='tight')
ax.get_figure().clf()
# plot entity distribution
df_e = pd.DataFrame([dict(enumerate(sorted(e.values(), reverse=True))) for e in e_dist_full]).T
df_e.columns = [f"min entity: {mef}, max predicate: {mpf}" for mef, mpf in candidates]
fig, axes = plt.subplots(2, 2, constrained_layout=True)
fig.suptitle('Entity Distribution over Different Configurations')
for (x, y), mpf in zip([(0, 0), (0, 1), (1, 0), (1, 1)], [100, 50, 25, 10]):
_df = df_e[[f"min entity: {mef}, max predicate: {mpf}" for mef in [1, 2, 3, 4]]]
_df.columns = [f"min entity: {mef}" for mef in [1, 2, 3, 4]]
ax = sns.lineplot(ax=axes[x, y], data=_df, linewidth=1.5)
ax.set(xscale='log')
if mpf != 100:
ax.legend_.remove()
axes[x, y].set_title(f'max predicate: {mpf}')
fig.supxlabel('unique entities sorted by frequency')
fig.supylabel('number of triples')
fig.savefig("data/stats.entity_distribution.png", bbox_inches='tight')