Datasets:
vr
commited on
Commit
•
d637f98
1
Parent(s):
e95f34e
changing 'label' to 'sub_law_area'
Browse files- README.md +3 -28
- swiss_law_area_prediction.py +5 -39
README.md
CHANGED
@@ -4,9 +4,9 @@ license: cc-by-sa-4.0
|
|
4 |
# Swiss Law Area Prediction
|
5 |
|
6 |
## Introduction
|
7 |
-
The
|
8 |
|
9 |
-
|
10 |
```
|
11 |
"public": ['Tax', 'Urban Planning and Environmental', 'Expropriation', 'Public Administration', 'Other Fiscal'],
|
12 |
"civil": ['Rental and Lease', 'Employment Contract', 'Bankruptcy', 'Family', 'Competition and Antitrust', 'Intellectual Property'],
|
@@ -15,47 +15,22 @@ A portion of the cases can be classified further into sub-areas:
|
|
15 |
|
16 |
|
17 |
## Size
|
18 |
-
### Main dataset
|
19 |
-
* train: 194'768
|
20 |
-
* validation: 36'882
|
21 |
-
* test: 97'676
|
22 |
-
|
23 |
-
### Sub-area dataset
|
24 |
* train: 10'475
|
25 |
* validation: 3194
|
26 |
* test: 8587
|
27 |
|
28 |
|
29 |
## Load datasets
|
30 |
-
Load the main dataset:
|
31 |
```python
|
32 |
dataset = load_dataset("rcds/swiss_law_area_prediction")
|
33 |
```
|
34 |
-
Load the dataset with the sub-areas:
|
35 |
-
```python
|
36 |
-
dataset = load_dataset("rcds/swiss_law_area_prediction", "sub_area")
|
37 |
-
```
|
38 |
|
39 |
## Columns
|
40 |
-
### Main dataset
|
41 |
-
- decision_id: unique identifier for the decision
|
42 |
-
- facts: facts section of the decision
|
43 |
-
- considerations: considerations section of the decision
|
44 |
-
- label: label of the decision (main area of law)
|
45 |
-
- law_sub_area: sub area of law of the decision
|
46 |
-
- language: language of the decision
|
47 |
-
- year: year of the decision
|
48 |
-
- court: court of the decision
|
49 |
-
- chamber: chamber of the decision
|
50 |
-
- canton: canton of the decision
|
51 |
-
- region: region of the decision
|
52 |
-
|
53 |
-
### Sub-area dataset
|
54 |
- decision_id: unique identifier for the decision
|
55 |
- facts: facts section of the decision
|
56 |
- considerations: considerations section of the decision
|
57 |
- law_area: label of the decision (main area of law)
|
58 |
-
-
|
59 |
- language: language of the decision
|
60 |
- year: year of the decision
|
61 |
- court: court of the decision
|
|
|
4 |
# Swiss Law Area Prediction
|
5 |
|
6 |
## Introduction
|
7 |
+
The dataset contains cases to be classified into the four main areas of law: Public, Civil, Criminal and Social
|
8 |
|
9 |
+
These can be classified further into sub-areas:
|
10 |
```
|
11 |
"public": ['Tax', 'Urban Planning and Environmental', 'Expropriation', 'Public Administration', 'Other Fiscal'],
|
12 |
"civil": ['Rental and Lease', 'Employment Contract', 'Bankruptcy', 'Family', 'Competition and Antitrust', 'Intellectual Property'],
|
|
|
15 |
|
16 |
|
17 |
## Size
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
* train: 10'475
|
19 |
* validation: 3194
|
20 |
* test: 8587
|
21 |
|
22 |
|
23 |
## Load datasets
|
|
|
24 |
```python
|
25 |
dataset = load_dataset("rcds/swiss_law_area_prediction")
|
26 |
```
|
|
|
|
|
|
|
|
|
27 |
|
28 |
## Columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
- decision_id: unique identifier for the decision
|
30 |
- facts: facts section of the decision
|
31 |
- considerations: considerations section of the decision
|
32 |
- law_area: label of the decision (main area of law)
|
33 |
+
- law_sub_area: sub area of law of the decision
|
34 |
- language: language of the decision
|
35 |
- year: year of the decision
|
36 |
- court: court of the decision
|
swiss_law_area_prediction.py
CHANGED
@@ -35,15 +35,12 @@ _LICENSE = ""
|
|
35 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
36 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
37 |
_URLS = {
|
38 |
-
"main": "https://huggingface.co/datasets/rcds/law_area_prediction/resolve/main/data/
|
39 |
-
"sub": "https://huggingface.co/datasets/rcds/law_area_prediction/resolve/main/data/sub_areas/huggingface"
|
40 |
}
|
41 |
|
42 |
def get_url(config_name):
|
43 |
if config_name == "main":
|
44 |
return _URLS["main"]
|
45 |
-
if config_name == "sub_area":
|
46 |
-
return _URLS["sub"]
|
47 |
|
48 |
|
49 |
class LawAreaPrediction(datasets.GeneratorBasedBuilder):
|
@@ -63,8 +60,7 @@ class LawAreaPrediction(datasets.GeneratorBasedBuilder):
|
|
63 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
64 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
65 |
BUILDER_CONFIGS = [
|
66 |
-
datasets.BuilderConfig(name="main", version=VERSION, description="
|
67 |
-
datasets.BuilderConfig(name="sub_area", version=VERSION, description="This dataset is for predicting sub law areas"),
|
68 |
]
|
69 |
|
70 |
DEFAULT_CONFIG_NAME = "main" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
@@ -76,7 +72,7 @@ class LawAreaPrediction(datasets.GeneratorBasedBuilder):
|
|
76 |
"decision_id": datasets.Value("string"),
|
77 |
"facts": datasets.Value("string"),
|
78 |
"considerations": datasets.Value("string"),
|
79 |
-
"
|
80 |
"law_sub_area": datasets.Value("string"),
|
81 |
"language": datasets.Value("string"),
|
82 |
"year": datasets.Value("int32"),
|
@@ -88,22 +84,6 @@ class LawAreaPrediction(datasets.GeneratorBasedBuilder):
|
|
88 |
# These are the features of your dataset like images, labels ...
|
89 |
}
|
90 |
)
|
91 |
-
if self.config.name != "main": # for law sub area prediction
|
92 |
-
features = datasets.Features(
|
93 |
-
{
|
94 |
-
"decision_id": datasets.Value("string"),
|
95 |
-
"facts": datasets.Value("string"),
|
96 |
-
"considerations": datasets.Value("string"),
|
97 |
-
"law_area": datasets.Value("string"),
|
98 |
-
"label": datasets.Value("string"),
|
99 |
-
"language": datasets.Value("string"),
|
100 |
-
"year": datasets.Value("int32"),
|
101 |
-
"court": datasets.Value("string"),
|
102 |
-
"chamber": datasets.Value("string"),
|
103 |
-
"canton": datasets.Value("string"),
|
104 |
-
"region": datasets.Value("string")
|
105 |
-
}
|
106 |
-
)
|
107 |
return datasets.DatasetInfo(
|
108 |
# This is the description that will appear on the datasets page.
|
109 |
description=_DESCRIPTION,
|
@@ -188,8 +168,8 @@ class LawAreaPrediction(datasets.GeneratorBasedBuilder):
|
|
188 |
"decision_id": data["decision_id"],
|
189 |
"facts": data["facts"],
|
190 |
"considerations": data["considerations"],
|
191 |
-
"
|
192 |
-
"law_sub_area": data["
|
193 |
"language": data["language"],
|
194 |
"year": data["year"],
|
195 |
"court": data["court"],
|
@@ -197,20 +177,6 @@ class LawAreaPrediction(datasets.GeneratorBasedBuilder):
|
|
197 |
"canton": data["canton"],
|
198 |
"region": data["region"]
|
199 |
}
|
200 |
-
if self.config.name == "sub_area":
|
201 |
-
yield id, {
|
202 |
-
"decision_id": data["decision_id"],
|
203 |
-
"facts": data["facts"],
|
204 |
-
"considerations": data["considerations"],
|
205 |
-
"law_area": data["law_area"],
|
206 |
-
"label": data["label"],
|
207 |
-
"language": data["language"],
|
208 |
-
"year": data["year"],
|
209 |
-
"court": data["court"],
|
210 |
-
"chamber": data["chamber"],
|
211 |
-
"canton": data["canton"],
|
212 |
-
"region": data["region"]
|
213 |
-
}
|
214 |
except lzma.LZMAError as e:
|
215 |
print(split, e)
|
216 |
if line_counter == 0:
|
|
|
35 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
36 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
37 |
_URLS = {
|
38 |
+
"main": "https://huggingface.co/datasets/rcds/law_area_prediction/resolve/main/data/sub_areas/huggingface"
|
|
|
39 |
}
|
40 |
|
41 |
def get_url(config_name):
|
42 |
if config_name == "main":
|
43 |
return _URLS["main"]
|
|
|
|
|
44 |
|
45 |
|
46 |
class LawAreaPrediction(datasets.GeneratorBasedBuilder):
|
|
|
60 |
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
61 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
62 |
BUILDER_CONFIGS = [
|
63 |
+
datasets.BuilderConfig(name="main", version=VERSION, description="Whole dataset"),
|
|
|
64 |
]
|
65 |
|
66 |
DEFAULT_CONFIG_NAME = "main" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
|
|
72 |
"decision_id": datasets.Value("string"),
|
73 |
"facts": datasets.Value("string"),
|
74 |
"considerations": datasets.Value("string"),
|
75 |
+
"law_area": datasets.Value("string"),
|
76 |
"law_sub_area": datasets.Value("string"),
|
77 |
"language": datasets.Value("string"),
|
78 |
"year": datasets.Value("int32"),
|
|
|
84 |
# These are the features of your dataset like images, labels ...
|
85 |
}
|
86 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
return datasets.DatasetInfo(
|
88 |
# This is the description that will appear on the datasets page.
|
89 |
description=_DESCRIPTION,
|
|
|
168 |
"decision_id": data["decision_id"],
|
169 |
"facts": data["facts"],
|
170 |
"considerations": data["considerations"],
|
171 |
+
"law_area": data["law_area"],
|
172 |
+
"law_sub_area": data["label"],
|
173 |
"language": data["language"],
|
174 |
"year": data["year"],
|
175 |
"court": data["court"],
|
|
|
177 |
"canton": data["canton"],
|
178 |
"region": data["region"]
|
179 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
except lzma.LZMAError as e:
|
181 |
print(split, e)
|
182 |
if line_counter == 0:
|