Datasets:
Upload loading script and debug data
Browse files- data/areas/huggingface/test.jsonl.xz +3 -0
- data/areas/huggingface/train.jsonl.xz +3 -0
- data/areas/huggingface/validation.jsonl.xz +3 -0
- data/sub_areas/huggingface/test.jsonl.xz +3 -0
- data/sub_areas/huggingface/train.jsonl.xz +3 -0
- data/sub_areas/huggingface/validation.jsonl.xz +3 -0
- law_area_prediction.py +220 -0
data/areas/huggingface/test.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc29bc921155edcfd7b1ba9e330a5f7c1f8ee5617fdd74afc71bf2eac04e4fc6
|
3 |
+
size 10259328
|
data/areas/huggingface/train.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecf68115fa37605bbd8a8265d5ad6c4f0dfccd34a4217bd096c4b5c7d8c79381
|
3 |
+
size 9393812
|
data/areas/huggingface/validation.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adf8b8458ffd6c01dbaa57c41a8f62b14ad0ccc187703ecc406f9fa1f44d8cb7
|
3 |
+
size 3031564
|
data/sub_areas/huggingface/test.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99cba03319658dacb33f80ff1ce157f2ddb5e923dc75527e31356dfab8c7f7f9
|
3 |
+
size 5413996
|
data/sub_areas/huggingface/train.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be146bc76f82994920a6f84b3ad7555504ca96aba957e5e29fce933548811349
|
3 |
+
size 5419304
|
data/sub_areas/huggingface/validation.jsonl.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fed6d7425e9574e07d13c68ae5071c19e857ad78ff8a2e2531688e86c6dc9ee
|
3 |
+
size 1829180
|
law_area_prediction.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import json
|
3 |
+
import lzma
|
4 |
+
import os
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
try:
|
8 |
+
import lzma as xz
|
9 |
+
except ImportError:
|
10 |
+
import pylzma as xz
|
11 |
+
|
12 |
+
|
13 |
+
# TODO: Add BibTeX citation
|
14 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
15 |
+
_CITATION = """\
|
16 |
+
@InProceedings{huggingface:dataset,
|
17 |
+
title = {A great new dataset},
|
18 |
+
author={huggingface, Inc.
|
19 |
+
},
|
20 |
+
year={2020}
|
21 |
+
}
|
22 |
+
"""
|
23 |
+
|
24 |
+
# You can copy an official description
|
25 |
+
_DESCRIPTION = """\
|
26 |
+
This dataset contains court decision for law area prediction task.
|
27 |
+
"""
|
28 |
+
|
29 |
+
# TODO: Add a link to an official homepage for the dataset here
|
30 |
+
_HOMEPAGE = ""
|
31 |
+
|
32 |
+
# TODO: Add the licence for the dataset here if you can find it
|
33 |
+
_LICENSE = ""
|
34 |
+
|
35 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
36 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
37 |
+
_URLS = {
|
38 |
+
"main": "https://huggingface.co/datasets/rcds/law_area_prediction/resolve/main/data/areas/huggingface",
|
39 |
+
"sub": "https://huggingface.co/datasets/rcds/law_area_prediction/resolve/main/data/sub_areas/huggingface"
|
40 |
+
}
|
41 |
+
|
42 |
+
def get_url(config_name):
|
43 |
+
if config_name == "main":
|
44 |
+
return _URLS["main"]
|
45 |
+
if config_name == "public sub" or config_name == "civil sub" or config_name == "criminal sub":
|
46 |
+
return _URLS["sub"]
|
47 |
+
|
48 |
+
|
49 |
+
class CourtViewGeneration(datasets.GeneratorBasedBuilder):
|
50 |
+
"""This dataset contains court decision for law area prediction task."""
|
51 |
+
|
52 |
+
VERSION = datasets.Version("1.1.0")
|
53 |
+
|
54 |
+
# This is an example of a dataset with multiple configurations.
|
55 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
56 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
57 |
+
|
58 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
59 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
60 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
61 |
+
|
62 |
+
# You will be able to load one or the other configurations in the following list with
|
63 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
64 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
65 |
+
BUILDER_CONFIGS = [
|
66 |
+
datasets.BuilderConfig(name="main", version=VERSION, description="This part of my dataset covers the whole dataset"),
|
67 |
+
datasets.BuilderConfig(name="public sub", version=VERSION, description="This dataset is for predicting the sub law areas of the public law"),
|
68 |
+
datasets.BuilderConfig(name="civil sub", version=VERSION, description="This dataset is for predicting the sub law areas of the civil law"),
|
69 |
+
datasets.BuilderConfig(name="criminal sub", version=VERSION, description="This dataset is for predicting the sub law areas of the criminal law"),
|
70 |
+
]
|
71 |
+
|
72 |
+
DEFAULT_CONFIG_NAME = "main" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
73 |
+
|
74 |
+
def _info(self):
|
75 |
+
if self.config.name == "main": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
76 |
+
features = datasets.Features(
|
77 |
+
{
|
78 |
+
"decision_id": datasets.Value("string"),
|
79 |
+
"facts": datasets.Value("string"),
|
80 |
+
"considerations": datasets.Value("string"),
|
81 |
+
"label": datasets.Value("string"),
|
82 |
+
"law_sub_area": datasets.Value("string"),
|
83 |
+
"language": datasets.Value("string"),
|
84 |
+
"year": datasets.Value("int32"),
|
85 |
+
"court": datasets.Value("string"),
|
86 |
+
"chamber": datasets.Value("string"),
|
87 |
+
"canton": datasets.Value("string"),
|
88 |
+
"region": datasets.Value("string")
|
89 |
+
|
90 |
+
# These are the features of your dataset like images, labels ...
|
91 |
+
}
|
92 |
+
)
|
93 |
+
if self.config.name != "main": # for law sub area prediction
|
94 |
+
features = datasets.Features(
|
95 |
+
{
|
96 |
+
"decision_id": datasets.Value("string"),
|
97 |
+
"facts": datasets.Value("string"),
|
98 |
+
"considerations": datasets.Value("string"),
|
99 |
+
"law_area": datasets.Value("string"),
|
100 |
+
"label": datasets.Value("string"),
|
101 |
+
"language": datasets.Value("string"),
|
102 |
+
"year": datasets.Value("int32"),
|
103 |
+
"court": datasets.Value("string"),
|
104 |
+
"chamber": datasets.Value("string"),
|
105 |
+
"canton": datasets.Value("string"),
|
106 |
+
"region": datasets.Value("string")
|
107 |
+
}
|
108 |
+
)
|
109 |
+
return datasets.DatasetInfo(
|
110 |
+
# This is the description that will appear on the datasets page.
|
111 |
+
description=_DESCRIPTION,
|
112 |
+
# This defines the different columns of the dataset and their types
|
113 |
+
features=features, # Here we define them above because they are different between the two configurations
|
114 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
115 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
116 |
+
# supervised_keys=("sentence", "label"),
|
117 |
+
# Homepage of the dataset for documentation
|
118 |
+
# homepage=_HOMEPAGE,
|
119 |
+
# License for the dataset if available
|
120 |
+
# license=_LICENSE,
|
121 |
+
# Citation for the dataset
|
122 |
+
# citation=_CITATION,
|
123 |
+
)
|
124 |
+
|
125 |
+
def _split_generators(self, dl_manager):
|
126 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
127 |
+
|
128 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
129 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
130 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
131 |
+
urls = get_url(self.config.name)
|
132 |
+
filepath_train = dl_manager.download(os.path.join(urls, "train.jsonl.xz"))
|
133 |
+
filepath_validation = dl_manager.download(os.path.join(urls, "validation.jsonl.xz"))
|
134 |
+
filepath_test = dl_manager.download(os.path.join(urls, "test.jsonl.xz"))
|
135 |
+
|
136 |
+
return [
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.TRAIN,
|
139 |
+
# These kwargs will be passed to _generate_examples
|
140 |
+
gen_kwargs={
|
141 |
+
"filepath": filepath_train,
|
142 |
+
"split": "train",
|
143 |
+
},
|
144 |
+
),
|
145 |
+
datasets.SplitGenerator(
|
146 |
+
name=datasets.Split.VALIDATION,
|
147 |
+
# These kwargs will be passed to _generate_examples
|
148 |
+
gen_kwargs={
|
149 |
+
"filepath": filepath_validation,
|
150 |
+
"split": "validation",
|
151 |
+
},
|
152 |
+
),
|
153 |
+
datasets.SplitGenerator(
|
154 |
+
name=datasets.Split.TEST,
|
155 |
+
# These kwargs will be passed to _generate_examples
|
156 |
+
gen_kwargs={
|
157 |
+
"filepath": filepath_test,
|
158 |
+
"split": "test"
|
159 |
+
},
|
160 |
+
)
|
161 |
+
]
|
162 |
+
|
163 |
+
def belongs_to_law_area(self, law_sub_area):
|
164 |
+
area_map = {
|
165 |
+
"public sub": ['Tax', 'Urban Planning and Environmental', 'Expropriation', 'Public Administration', 'Other Fiscal'],
|
166 |
+
"civil sub": ['Rental and Lease', 'Employment Contract', 'Bankruptcy', 'Family', 'Competition and Antitrust', 'Intellectual Property'],
|
167 |
+
'criminal sub': ['Substantive Criminal', 'Criminal Procedure']
|
168 |
+
}
|
169 |
+
if law_sub_area in area_map[self.config.name]:
|
170 |
+
return True
|
171 |
+
# raise Error if law_sub_area not found in any area
|
172 |
+
for area in area_map:
|
173 |
+
if law_sub_area in area_map[area]:
|
174 |
+
return False
|
175 |
+
raise ValueError("law_sub_area not found in any area")
|
176 |
+
|
177 |
+
|
178 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
179 |
+
def _generate_examples(self, filepath, split):
|
180 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
181 |
+
line_counter = 0
|
182 |
+
try:
|
183 |
+
with xz.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
|
184 |
+
for id, line in enumerate(f):
|
185 |
+
line_counter += 1
|
186 |
+
if line:
|
187 |
+
data = json.loads(line)
|
188 |
+
if self.config.name == "main":
|
189 |
+
yield id, {
|
190 |
+
"decision_id": data["decision_id"],
|
191 |
+
"facts": data["facts"],
|
192 |
+
"considerations": data["considerations"],
|
193 |
+
"label": data["label"],
|
194 |
+
"law_sub_area": data["law_sub_area"],
|
195 |
+
"language": data["language"],
|
196 |
+
"year": data["year"],
|
197 |
+
"court": data["court"],
|
198 |
+
"chamber": data["chamber"],
|
199 |
+
"canton": data["canton"],
|
200 |
+
"region": data["region"]
|
201 |
+
}
|
202 |
+
if self.config.name == "public sub" or self.config.name == "civil sub" or self.config.name == "criminal sub":
|
203 |
+
if self.belongs_to_law_area(data["law_sub_area"]):
|
204 |
+
yield id, {
|
205 |
+
"decision_id": data["decision_id"],
|
206 |
+
"facts": data["facts"],
|
207 |
+
"considerations": data["considerations"],
|
208 |
+
"law_area": data["law_area"],
|
209 |
+
"label": data["label"],
|
210 |
+
"language": data["language"],
|
211 |
+
"year": data["year"],
|
212 |
+
"court": data["court"],
|
213 |
+
"chamber": data["chamber"],
|
214 |
+
"canton": data["canton"],
|
215 |
+
"region": data["region"]
|
216 |
+
}
|
217 |
+
except lzma.LZMAError as e:
|
218 |
+
print(split, e)
|
219 |
+
if line_counter == 0:
|
220 |
+
raise e
|