Datasets:
Update DiaBLa.py
Browse files
DiaBLa.py
CHANGED
@@ -50,9 +50,9 @@ class Diabla(datasets.GeneratorBasedBuilder):
|
|
50 |
|
51 |
BUILDER_CONFIGS = [
|
52 |
DiablaConfig(
|
53 |
-
name=
|
54 |
-
version=datasets.Version(
|
55 |
-
description=
|
56 |
),
|
57 |
]
|
58 |
|
@@ -62,11 +62,11 @@ class Diabla(datasets.GeneratorBasedBuilder):
|
|
62 |
description=_DESCRIPTION,
|
63 |
features=datasets.Features(
|
64 |
{
|
65 |
-
'id': datasets.Value(
|
66 |
-
'orig': datasets.Value(
|
67 |
-
'norm': datasets.Value(
|
68 |
-
'mt': datasets.Value(
|
69 |
-
'ref': datasets.Value(
|
70 |
'utterance_meta': datasets.features.Sequence(
|
71 |
{
|
72 |
'eval-judgment': ClassLabel(num_classes=3, names=['poor', 'medium', 'perfect']),
|
@@ -81,19 +81,27 @@ class Diabla(datasets.GeneratorBasedBuilder):
|
|
81 |
),
|
82 |
'dialogue_meta': datasets.features.Sequence(
|
83 |
{
|
84 |
-
'start_time': datasets.Value(
|
85 |
-
'end_time' : datasets.Value(
|
86 |
-
'translation_model': datasets.Value(
|
87 |
'final_evaluation_user1': datasets.features.Sequence(
|
88 |
{
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
'final_evaluation_user2': datasets.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
'scenario': datasets.features.Sequence(
|
98 |
[
|
99 |
[
|
@@ -103,20 +111,20 @@ class Diabla(datasets.GeneratorBasedBuilder):
|
|
103 |
),
|
104 |
'user1': datasets.features.Sequence(
|
105 |
{
|
106 |
-
'rolenum': datasets.Value(
|
107 |
-
'role': datasets.Value(
|
108 |
-
'initiated_dialogue': datasets.Value(
|
109 |
-
'turn_number': datasets.Value(
|
110 |
-
'lang': datasets.Value(
|
111 |
}
|
112 |
),
|
113 |
'user2': datasets.features.Sequence(
|
114 |
{
|
115 |
-
'rolenum': datasets.Value(
|
116 |
-
'role': datasets.Value(
|
117 |
-
'initiated_dialogue': datasets.Value(
|
118 |
-
'turn_number': datasets.Value(
|
119 |
-
'lang': datasets.Value(
|
120 |
}
|
121 |
)
|
122 |
}
|
@@ -125,11 +133,11 @@ class Diabla(datasets.GeneratorBasedBuilder):
|
|
125 |
[
|
126 |
datasets.features.Sequence(
|
127 |
{
|
128 |
-
'id': datasets.Value(
|
129 |
-
'orig': datasets.Value(
|
130 |
-
'norm': datasets.Value(
|
131 |
-
'mt': datasets.Value(
|
132 |
-
'ref': datasets.Value(
|
133 |
'utterance_meta': datasets.features.Sequence(
|
134 |
{
|
135 |
'judgment': ClassLabel(num_classes=3, names=['poor', 'medium', 'perfect']),
|
@@ -182,6 +190,12 @@ class Diabla(datasets.GeneratorBasedBuilder):
|
|
182 |
dialogue_info = {k: dialogue[k] for k in dialogue_info_keys}
|
183 |
if dialogue_info['end_time'] is None:
|
184 |
dialogue_info['end_time'] = ''
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
# Main data: the utterances
|
186 |
for utterance_id in dialogue['utterances']:
|
187 |
utterance = dialogue['utterances'][utterance_id]
|
@@ -205,15 +219,7 @@ class Diabla(datasets.GeneratorBasedBuilder):
|
|
205 |
'ref': reference_text,
|
206 |
'utterance_meta': utterance_info
|
207 |
}
|
208 |
-
|
209 |
-
"verbatim_quality": datasets.Value("string"),
|
210 |
-
|
211 |
-
"particular_problems": "",
|
212 |
-
"tech": "There were no technical problems",
|
213 |
-
"would_use": false,
|
214 |
-
"timestamp": "2018-05-18T17:11:39.104833",
|
215 |
-
|
216 |
-
"technical_issue": "There were no technical problems"
|
217 |
# add to history (without dialogue info and history)
|
218 |
dialogue_history.append(utterance_instance.copy())
|
219 |
utterance_instance['dialogue_meta'] = dialogue_info
|
|
|
50 |
|
51 |
BUILDER_CONFIGS = [
|
52 |
DiablaConfig(
|
53 |
+
name='plain_text',
|
54 |
+
version=datasets.Version('1.0.0", ''),
|
55 |
+
description='Plain text',
|
56 |
),
|
57 |
]
|
58 |
|
|
|
62 |
description=_DESCRIPTION,
|
63 |
features=datasets.Features(
|
64 |
{
|
65 |
+
'id': datasets.Value('string'),
|
66 |
+
'orig': datasets.Value('string'),
|
67 |
+
'norm': datasets.Value('string'),
|
68 |
+
'mt': datasets.Value('string'),
|
69 |
+
'ref': datasets.Value('string'),
|
70 |
'utterance_meta': datasets.features.Sequence(
|
71 |
{
|
72 |
'eval-judgment': ClassLabel(num_classes=3, names=['poor', 'medium', 'perfect']),
|
|
|
81 |
),
|
82 |
'dialogue_meta': datasets.features.Sequence(
|
83 |
{
|
84 |
+
'start_time': datasets.Value('string'),
|
85 |
+
'end_time' : datasets.Value('string'),
|
86 |
+
'translation_model': datasets.Value('string'),
|
87 |
'final_evaluation_user1': datasets.features.Sequence(
|
88 |
{
|
89 |
+
'style': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent']),
|
90 |
+
'coherence': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent']),
|
91 |
+
'grammaticality': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent']),
|
92 |
+
'meaning': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent']),
|
93 |
+
'word_choice': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent'])
|
94 |
+
}
|
95 |
+
),
|
96 |
+
'final_evaluation_user2': datasets.features.Sequence(
|
97 |
+
{
|
98 |
+
'style': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent']),
|
99 |
+
'coherence': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent']),
|
100 |
+
'grammaticality': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent']),
|
101 |
+
'meaning': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent']),
|
102 |
+
'word_choice': ClassLabel(num_classes=3, names=['poor', 'average', 'good', 'excellent'])
|
103 |
+
}
|
104 |
+
),
|
105 |
'scenario': datasets.features.Sequence(
|
106 |
[
|
107 |
[
|
|
|
111 |
),
|
112 |
'user1': datasets.features.Sequence(
|
113 |
{
|
114 |
+
'rolenum': datasets.Value('int64'),
|
115 |
+
'role': datasets.Value('string'),
|
116 |
+
'initiated_dialogue': datasets.Value('bool'),
|
117 |
+
'turn_number': datasets.Value('int64'),
|
118 |
+
'lang': datasets.Value('string'),
|
119 |
}
|
120 |
),
|
121 |
'user2': datasets.features.Sequence(
|
122 |
{
|
123 |
+
'rolenum': datasets.Value('int64'),
|
124 |
+
'role': datasets.Value('string'),
|
125 |
+
'initiated_dialogue': datasets.Value('bool'),
|
126 |
+
'turn_number': datasets.Value('int64'),
|
127 |
+
'lang': datasets.Value('string'),
|
128 |
}
|
129 |
)
|
130 |
}
|
|
|
133 |
[
|
134 |
datasets.features.Sequence(
|
135 |
{
|
136 |
+
'id': datasets.Value('string'),
|
137 |
+
'orig': datasets.Value('string'),
|
138 |
+
'norm': datasets.Value('string'),
|
139 |
+
'mt': datasets.Value('string'),
|
140 |
+
'ref': datasets.Value('string'),
|
141 |
'utterance_meta': datasets.features.Sequence(
|
142 |
{
|
143 |
'judgment': ClassLabel(num_classes=3, names=['poor', 'medium', 'perfect']),
|
|
|
190 |
dialogue_info = {k: dialogue[k] for k in dialogue_info_keys}
|
191 |
if dialogue_info['end_time'] is None:
|
192 |
dialogue_info['end_time'] = ''
|
193 |
+
for info_to_remove in ['interface','verbatim_quality',
|
194 |
+
'particular_problems', 'tech',
|
195 |
+
'would_use', 'timestamp', 'technical_issue']:
|
196 |
+
del dialogue_info['final_evaluation_user1'][info_to_remove]
|
197 |
+
del dialogue_info['final_evaluation_user2'][info_to_remove]
|
198 |
+
|
199 |
# Main data: the utterances
|
200 |
for utterance_id in dialogue['utterances']:
|
201 |
utterance = dialogue['utterances'][utterance_id]
|
|
|
219 |
'ref': reference_text,
|
220 |
'utterance_meta': utterance_info
|
221 |
}
|
222 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
# add to history (without dialogue info and history)
|
224 |
dialogue_history.append(utterance_instance.copy())
|
225 |
utterance_instance['dialogue_meta'] = dialogue_info
|