metadata
license: mit
task_categories:
- summarization
- text2text-generation
language:
- en
size_categories:
- 10K<n<100K
source_datasets: tomasg25/scientific_lay_summarisation
scientific_lay_summarisation - elife - normalized
This is the "elife" split. For more words, refer to the PLOS split README
Contents
load with datasets:
from datasets import load_dataset
# If the dataset is gated/private, make sure you have run huggingface-cli login
dataset = load_dataset("pszemraj/scientific_lay_summarisation-elife-norm")
dataset
Output:
DatasetDict({
train: Dataset({
features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
num_rows: 4346
})
test: Dataset({
features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
num_rows: 241
})
validation: Dataset({
features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
num_rows: 241
})
})
Lengths
Train set: