alexbauer-pf commited on
Commit
b68214a
·
verified ·
1 Parent(s): 7ef3e7c

Update README.md to include finite beta explanation and example code

Browse files
Files changed (1) hide show
  1. README.md +131 -15
README.md CHANGED
@@ -550,6 +550,8 @@ size_categories:
550
 
551
  A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.
552
 
 
 
553
  ## Dataset Details
554
 
555
  ### Dataset Description
@@ -557,6 +559,7 @@ A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corr
557
  <!-- Provide a longer summary of what this dataset is. -->
558
 
559
  Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions.
 
560
  With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.
561
 
562
  - **Curated by:** Proxima Fusion
@@ -576,8 +579,46 @@ With the release of this dataset, we aim to lower the barrier for optimization a
576
 
577
  <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
578
 
579
- The dataset consists of 2 tabular parts. Both parts have a column `plasma_config_id` in common which can be used to associate respective entries:
580
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581
  <table>
582
  <tr>
583
  <th style="border-right: 1px solid gray;">default</th>
@@ -585,22 +626,59 @@ The dataset consists of 2 tabular parts. Both parts have a column `plasma_config
585
  </tr>
586
  <tr>
587
  <td style="border-right: 1px solid gray;">
588
- Contains information about:
589
- <ul>
590
- <li>Plasma boundaries</li>
591
- <li>Ideal MHD metrics</li>
592
- <li>Omnigenous field and targets, used as input for sampling of plasma boundaries</li>
593
- <li>Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)</li>
594
- <li>Miscellaneous information about errors that might have occurred during sampling or metrics computation.</li>
595
- </ul>
596
- For each of the components above there is an identifier column (ending with `.id`), a JSON column containing a JSON-string representation, as well as one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf).
597
- </td>
598
- <td>Contains, for each plasma boundary, a JSON-string representations of the "WOut" file as obtained when running VMEC, initialized on the boundary.<br>The JSON representation can be converted to a VMEC2000 output file.
599
- </td>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600
  </tr>
601
  </table>
602
 
603
- The columns `plasma_config_id` and `vmecpp_wout_id` are present in both parts and link the two in both directions.
604
 
605
  ## Uses
606
 
@@ -806,6 +884,7 @@ from constellaration.utils import visualization
806
  visualization.plot_flux_surfaces(vmecpp_wout, boundary)
807
  ```
808
  ![Plot of flux surfaces](assets/flux_surfaces.png)
 
809
  Save ideal MHD equilibrium to *VMEC2000 WOut* file:
810
  ```python
811
  import pathlib
@@ -813,6 +892,43 @@ from constellaration.utils import file_exporter
813
 
814
  file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc"))
815
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
816
 
817
  ## Dataset Creation
818
 
 
550
 
551
  A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.
552
 
553
+ The performance metrics and ideal MHD equilibria were evaluated under vacuum (default) and with plasma inside (finite beta).
554
+
555
  ## Dataset Details
556
 
557
  ### Dataset Description
 
559
  <!-- Provide a longer summary of what this dataset is. -->
560
 
561
  Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions.
562
+
563
  With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.
564
 
565
  - **Curated by:** Proxima Fusion
 
579
 
580
  <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
581
 
582
+ There are 6 tuples of datasets, one for each percentage of volume-averaged plasma inside the boundary:
583
+ <table>
584
+ <tr>
585
+ <th>Condition</th>
586
+ <th>Boundaries, Metrics, Generation Settings, Misc</th>
587
+ <th>Ideal MHD Equilibira</th>
588
+ </tr>
589
+ <tr>
590
+ <th>Vacuum</th>
591
+ <th>default</th>
592
+ <th>vmecpp_wout</th>
593
+ </tr>
594
+ <tr>
595
+ <th>1% Beta</th>
596
+ <th>finte_beta_1pct</th>
597
+ <th>vmecpp_wout_finite_beta_1pct</th>
598
+ </tr>
599
+ <tr>
600
+ <th>2% Beta</th>
601
+ <th>finte_beta_2pct</th>
602
+ <th>vmecpp_wout_finite_beta_2pct</th>
603
+ </tr>
604
+ <tr>
605
+ <th>3% Beta</th>
606
+ <th>finte_beta_3pct</th>
607
+ <th>vmecpp_wout_finite_beta_3pct</th>
608
+ </tr>
609
+ <tr>
610
+ <th>4% Beta</th>
611
+ <th>finte_beta_4pct</th>
612
+ <th>vmecpp_wout_finite_beta_4pct</th>
613
+ </tr>
614
+ <tr>
615
+ <th>5% Beta</th>
616
+ <th>finte_beta_5pct</th>
617
+ <th>vmecpp_wout_finite_beta_5pct</th>
618
+ </tr>
619
+ </table>
620
+ <br>
621
+ Contents of datasets:
622
  <table>
623
  <tr>
624
  <th style="border-right: 1px solid gray;">default</th>
 
626
  </tr>
627
  <tr>
628
  <td style="border-right: 1px solid gray;">
629
+ Contains information about:
630
+ <ul>
631
+ <li>Plasma boundaries</li>
632
+ <li>Ideal MHD metrics in vacuum</li>
633
+ <li>Omnigenous field and targets, used as input for sampling of plasma boundaries</li>
634
+ <li>Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)</li>
635
+ <li>Miscellaneous information about errors that might have occurred during sampling or metrics computation.</li>
636
+ <li>Miscellaneous information
637
+ <ul>
638
+ <li>the corresponding ideal MHD equilibrium ID in <b>vmecpp_wout</b></li>
639
+ <li>errors that might have occurred during sampling or metrics computation.</li>
640
+ </ul>
641
+ </li>
642
+ </ul>
643
+ </td>
644
+ <td>
645
+ Contains:
646
+ <ul>
647
+ <li>For each plasma boundary in <b>default</b>, a JSON-string representation of the "WOut" file as obtained when running VMEC, initialized on the boundary.<br>The JSON representation can be converted to a VMEC2000 output file.</li>
648
+ <li>The corresponding plasma configuration ID in <b>default</b></li>
649
+ </ul>
650
+ </td>
651
+ </tr>
652
+ <tr>
653
+ <td colspan="2">
654
+ The <b>default</b> (vacuum) subset above is special in the sense that it contains more information than the other subsets (finite betas) below. Those are derived from the <b>default</b> (vacuum) subset by setting for each plasma boundary the respective volume-averaged beta percentage and re-computing the performance metrics and ideal MHD equilibria:
655
+ </td>
656
+ </tr>
657
+ <tr>
658
+ <th style="border-right: 1px solid gray;">finite_beta_*pct</th>
659
+ <th>vmecpp_wout_finite_beta_*pct</th>
660
+ </tr>
661
+ <tr>
662
+ <td style="border-right: 1px solid gray;">
663
+ Contains information about:
664
+ <ul>
665
+ <li>Ideal MHD metrics with plasma</li>
666
+ <li>Miscellaneous information
667
+ <ul>
668
+ <li>the corresponding source plasma configuration ID in <b>default</b></li>
669
+ <li>the corresponding ideal MHD equilibrium ID in <b>vmecpp_wout_finite_beta_*pct</b></li>
670
+ <li>errors that might have occurred metrics computation.</li>
671
+ </ul>
672
+ </li>
673
+ </ul>
674
+ </td>
675
+ <td>
676
+ Same as <b>vmecpp_wout</b> above, corresponding to <b>finite_beta_*pct</b>
677
+ </td>
678
  </tr>
679
  </table>
680
 
681
+ For each of the components above there is an identifier column (ending with `.id`), a JSON column containing a JSON-string representation, as well as one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf).
682
 
683
  ## Uses
684
 
 
884
  visualization.plot_flux_surfaces(vmecpp_wout, boundary)
885
  ```
886
  ![Plot of flux surfaces](assets/flux_surfaces.png)
887
+
888
  Save ideal MHD equilibrium to *VMEC2000 WOut* file:
889
  ```python
890
  import pathlib
 
892
 
893
  file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc"))
894
  ```
895
+ Match the boundaries from the **default** dataset to the corresponding metrics under a certain plasma condition:
896
+ ```python
897
+ import datasets
898
+
899
+ # Load default dataset to get the boundaries
900
+ default_ds = datasets.load_dataset(
901
+ "proxima-fusion/constellaration",
902
+ split="train",
903
+ num_proc=4,
904
+ )
905
+
906
+ # Load finite beta 3% dataset
907
+ finite_beta_3pct_ds = datasets.load_dataset(
908
+ "proxima-fusion/constellaration",
909
+ name="finite_beta_3pct",
910
+ split="train",
911
+ num_proc=4,
912
+ )
913
+
914
+ # Join the two datasets on plasma_config_id <-> misc.source_plasma_config_id
915
+ default_df = (
916
+ default_ds
917
+ .to_pandas()
918
+ .set_index("plasma_config_id")
919
+ .filter(like="boundary.")
920
+ )
921
+ finite_beta_3pct_df = (
922
+ finite_beta_3pct_ds
923
+ .to_pandas()
924
+ .set_index("misc.source_plasma_config_id")
925
+ )
926
+ finite_beta_3pct_with_boundaries_df = (
927
+ finite_beta_3pct_df
928
+ .join(default_df, how="inner") # joins on index
929
+ .reset_index(names="misc.source_plasma_config_id")
930
+ )
931
+ ```
932
 
933
  ## Dataset Creation
934