|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial
|
|
from typing import Optional, Tuple
|
|
|
|
import os
|
|
os.environ['USE_FLASH_ATTENTION'] = '1'
|
|
|
|
import torch
|
|
from torch import nn, einsum, Tensor
|
|
import torch.nn.functional as F
|
|
|
|
|
|
from torch.nn.attention import SDPBackend, sdpa_kernel
|
|
torch.backends.cuda.enable_flash_sdp(True)
|
|
|
|
from collections import namedtuple
|
|
from functools import wraps
|
|
from packaging import version
|
|
from dataclasses import dataclass
|
|
|
|
from einops import rearrange, repeat
|
|
|
|
|
|
|
|
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
|
|
|
|
@dataclass
|
|
class Intermediates:
|
|
qk_similarities: Optional[Tensor] = None
|
|
pre_softmax_attn: Optional[Tensor] = None
|
|
post_softmax_attn: Optional[Tensor] = None
|
|
cached_kv: Optional[Tuple[Tensor, Tensor]] = None
|
|
|
|
def to_tuple(self):
|
|
return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn)
|
|
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
def compact(arr):
|
|
return [*filter(exists, arr)]
|
|
|
|
def once(fn):
|
|
called = False
|
|
@wraps(fn)
|
|
def inner(x):
|
|
nonlocal called
|
|
if called:
|
|
return
|
|
called = True
|
|
return fn(x)
|
|
return inner
|
|
|
|
print_once = once(print)
|
|
|
|
|
|
|
|
|
|
def create_causal_mask(i, j, device):
|
|
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
|
|
|
|
def onnx_create_causal_mask(i, j, device):
|
|
r = torch.arange(i, device = device)
|
|
causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j')
|
|
causal_mask = F.pad(causal_mask, (j - i, 0), value = False)
|
|
return causal_mask
|
|
|
|
|
|
|
|
class Attend(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dropout = 0.,
|
|
causal = False,
|
|
heads = None,
|
|
talking_heads = False,
|
|
sparse_topk = None,
|
|
scale = None,
|
|
qk_norm = False,
|
|
flash = False,
|
|
add_zero_kv = False,
|
|
onnxable = False
|
|
):
|
|
super().__init__()
|
|
self.scale = scale
|
|
self.qk_norm = qk_norm
|
|
|
|
self.causal = causal
|
|
self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask
|
|
|
|
self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax
|
|
|
|
self.dropout = dropout
|
|
self.attn_dropout = nn.Dropout(dropout)
|
|
|
|
|
|
|
|
assert not (flash and talking_heads), 'talking heads not compatible with flash attention'
|
|
|
|
self.talking_heads = talking_heads
|
|
if talking_heads:
|
|
self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
|
|
self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
|
|
|
|
|
|
|
|
assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention'
|
|
self.sparse_topk = sparse_topk
|
|
|
|
|
|
|
|
|
|
self.add_zero_kv = add_zero_kv
|
|
|
|
|
|
|
|
self.flash = flash
|
|
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
|
|
|
|
|
|
|
|
self.cpu_config = EfficientAttentionConfig(True, True, True)
|
|
self.cuda_config = None
|
|
|
|
if not torch.cuda.is_available() or not flash:
|
|
return
|
|
|
|
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
|
|
|
major, minor = device_properties.major, device_properties.minor
|
|
|
|
if (major, minor) == (8, 0):
|
|
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
|
|
self.cuda_config = EfficientAttentionConfig(True, False, False)
|
|
elif (major, minor) == (9, 0):
|
|
print_once('H100 GPU detected, using flash attention')
|
|
self.cuda_config = EfficientAttentionConfig(True, False, False)
|
|
else:
|
|
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
|
|
self.cuda_config = EfficientAttentionConfig(False, True, True)
|
|
|
|
def flash_attn(
|
|
self,
|
|
q, k, v,
|
|
mask = None,
|
|
attn_bias = None
|
|
):
|
|
batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
|
|
|
|
|
|
|
|
|
|
if k.ndim == 3:
|
|
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
|
|
|
|
if v.ndim == 3:
|
|
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
|
|
|
|
|
|
|
|
if self.qk_norm:
|
|
default_scale = q.shape[-1] ** -0.5
|
|
q = q * (self.scale / default_scale)
|
|
|
|
|
|
|
|
|
|
causal = self.causal
|
|
|
|
|
|
|
|
|
|
if q_len == 1 and causal:
|
|
causal = False
|
|
|
|
|
|
|
|
if exists(mask):
|
|
assert mask.ndim == 4
|
|
mask = mask.expand(batch, heads, q_len, k_len)
|
|
|
|
|
|
|
|
if k_len > q_len and causal:
|
|
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
|
if not exists(mask):
|
|
mask = ~causal_mask
|
|
else:
|
|
mask = mask & ~causal_mask
|
|
causal = False
|
|
|
|
|
|
|
|
row_is_entirely_masked = None
|
|
|
|
if exists(mask) and causal:
|
|
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
|
mask = mask & ~causal_mask
|
|
|
|
|
|
|
|
row_is_entirely_masked = ~mask.any(dim = -1)
|
|
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
|
|
|
|
causal = False
|
|
|
|
|
|
|
|
|
|
if exists(attn_bias):
|
|
attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1)
|
|
|
|
|
|
|
|
|
|
mask_value = -torch.finfo(q.dtype).max
|
|
|
|
if exists(mask):
|
|
attn_bias = attn_bias.masked_fill(~mask, mask_value // 2)
|
|
elif causal:
|
|
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
|
attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2)
|
|
causal = False
|
|
|
|
|
|
|
|
|
|
mask = attn_bias
|
|
|
|
|
|
|
|
config = self.cuda_config if is_cuda else self.cpu_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION]):
|
|
|
|
|
|
|
|
|
|
|
|
out = F.scaled_dot_product_attention(
|
|
q, k, v,
|
|
attn_mask = mask,
|
|
dropout_p = self.dropout if self.training else 0.,
|
|
is_causal = causal
|
|
)
|
|
|
|
|
|
|
|
if exists(row_is_entirely_masked):
|
|
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
|
|
|
|
return out, Intermediates()
|
|
|
|
def forward(
|
|
self,
|
|
q, k, v,
|
|
mask = None,
|
|
attn_bias = None,
|
|
prev_attn = None
|
|
):
|
|
"""
|
|
einstein notation
|
|
b - batch
|
|
h - heads
|
|
n, i, j - sequence length (base sequence length, source, target)
|
|
d - feature dimension
|
|
"""
|
|
|
|
n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device
|
|
|
|
scale = default(self.scale, q.shape[-1] ** -0.5)
|
|
|
|
causal = self.causal
|
|
|
|
|
|
|
|
if n == 1 and causal:
|
|
causal = False
|
|
|
|
|
|
|
|
if kv_heads == 1:
|
|
k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v))
|
|
elif kv_heads < heads:
|
|
k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v))
|
|
|
|
|
|
|
|
if self.add_zero_kv:
|
|
k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v))
|
|
|
|
if exists(mask):
|
|
mask = F.pad(mask, (1, 0), value = True)
|
|
|
|
if exists(attn_bias):
|
|
attn_bias = F.pad(attn_bias, (1, 0), value = 0.)
|
|
|
|
if self.flash:
|
|
assert not exists(prev_attn), 'residual attention not compatible with flash attention'
|
|
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias)
|
|
|
|
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
|
|
|
|
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
|
|
|
|
if exists(prev_attn):
|
|
dots = dots + prev_attn
|
|
|
|
qk_similarities = dots.clone()
|
|
|
|
if self.talking_heads:
|
|
dots = self.pre_softmax_talking_heads(dots)
|
|
|
|
if exists(attn_bias):
|
|
dots = dots + attn_bias
|
|
|
|
i, j, dtype = *dots.shape[-2:], dots.dtype
|
|
|
|
mask_value = -torch.finfo(dots.dtype).max
|
|
|
|
if exists(self.sparse_topk) and self.sparse_topk < j:
|
|
top_values, _ = dots.topk(self.sparse_topk, dim = -1)
|
|
sparse_topk_mask = dots < top_values[..., -1:]
|
|
mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask
|
|
|
|
if exists(mask):
|
|
dots = dots.masked_fill(~mask, mask_value)
|
|
|
|
if causal:
|
|
causal_mask = self.create_causal_mask(i, j, device = device)
|
|
dots = dots.masked_fill(causal_mask, mask_value)
|
|
|
|
pre_softmax_attn = dots.clone()
|
|
|
|
attn = self.attn_fn(dots, dim = -1)
|
|
attn = attn.type(dtype)
|
|
|
|
post_softmax_attn = attn.clone()
|
|
|
|
attn = self.attn_dropout(attn)
|
|
|
|
if self.talking_heads:
|
|
attn = self.post_softmax_talking_heads(attn)
|
|
|
|
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
|
|
|
|
intermediates = Intermediates(
|
|
qk_similarities = qk_similarities,
|
|
pre_softmax_attn = pre_softmax_attn,
|
|
post_softmax_attn = post_softmax_attn
|
|
)
|
|
|
|
return out, intermediates
|
|
|
|
|
|
|
|
from math import ceil, log
|
|
from typing import Optional, Union, Tuple, Callable
|
|
|
|
import torch
|
|
from torch import nn, Tensor
|
|
from torch.nn import Module
|
|
import torch.nn.functional as F
|
|
|
|
from einops import rearrange, pack, unpack
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
def identity(t, *args, **kwargs):
|
|
return t
|
|
|
|
def cast_tuple(t, length = 1):
|
|
return t if isinstance(t, tuple) else (t,) * length
|
|
|
|
def eval_decorator(fn):
|
|
def inner(self, *args, **kwargs):
|
|
was_training = self.training
|
|
self.eval()
|
|
out = fn(self, *args, **kwargs)
|
|
self.train(was_training)
|
|
return out
|
|
return inner
|
|
|
|
|
|
|
|
def align_right(t, lens, pad_id = 0):
|
|
batch, seq_len, device, dtype = *t.shape, t.device, t.dtype
|
|
|
|
assert lens.ndim == 1 and lens.shape[0] == batch
|
|
assert lens.amax() <= seq_len
|
|
|
|
pad_lens = seq_len - lens
|
|
max_pad_len = pad_lens.amax()
|
|
|
|
batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None]
|
|
prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long)
|
|
|
|
t = F.pad(t, (max_pad_len, 0), value = 0)
|
|
offset = max_pad_len - pad_lens
|
|
|
|
aligned = t[batch_arange, prompt_len_arange + offset[..., None]]
|
|
return aligned
|
|
|
|
|
|
|
|
def top_p(logits, thres = 0.9):
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending = True)
|
|
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1)
|
|
|
|
sorted_indices_to_remove = cum_probs > thres
|
|
sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False)
|
|
|
|
sorted_logits[sorted_indices_to_remove] = float('-inf')
|
|
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
|
|
|
|
|
|
|
|
def top_k(logits, frac_num_tokens = 0.1, k = None):
|
|
num_tokens = logits.shape[-1]
|
|
|
|
k = default(k, ceil(frac_num_tokens * num_tokens))
|
|
k = min(k, num_tokens)
|
|
|
|
val, ind = torch.topk(logits, k)
|
|
probs = torch.full_like(logits, float('-inf'))
|
|
probs.scatter_(1, ind, val)
|
|
return probs
|
|
|
|
|
|
|
|
def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02):
|
|
probs = F.softmax(logits, dim = -1)
|
|
max_probs = torch.amax(probs, dim = -1, keepdim = True)
|
|
limit = torch.pow(max_probs, min_p_pow) * min_p_ratio
|
|
return torch.where(probs < limit, float('-inf'), logits)
|
|
|
|
|
|
|
|
def contrastive_decode_fn(
|
|
expert_logits,
|
|
amateur_logits,
|
|
alpha = 0.1,
|
|
beta = 0.5
|
|
):
|
|
"""
|
|
Appendix A Algorithm 2
|
|
https://arxiv.org/abs/2309.09117
|
|
"""
|
|
|
|
cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True)
|
|
diffs = (1 + beta) * expert_logits - beta * amateur_logits
|
|
contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max)
|
|
return contrastive_decode_logits
|
|
|
|
|
|
|
|
class AutoregressiveWrapper(Module):
|
|
def __init__(
|
|
self,
|
|
net,
|
|
ignore_index = -100,
|
|
pad_value = 0,
|
|
mask_prob = 0.,
|
|
add_attn_z_loss = False,
|
|
return_cache=False
|
|
):
|
|
super().__init__()
|
|
self.pad_value = pad_value
|
|
self.ignore_index = ignore_index
|
|
|
|
self.net = net
|
|
self.max_seq_len = net.max_seq_len
|
|
|
|
|
|
assert mask_prob < 1.
|
|
self.mask_prob = mask_prob
|
|
|
|
|
|
self.add_attn_z_loss = add_attn_z_loss
|
|
self.return_cache = return_cache
|
|
|
|
@torch.inference_mode()
|
|
@eval_decorator
|
|
def generate(
|
|
self,
|
|
prompts,
|
|
seq_len,
|
|
eos_token = None,
|
|
temperature = 1.,
|
|
prompt_lens: Optional[Tensor] = None,
|
|
filter_logits_fn: Callable = top_k,
|
|
restrict_to_max_seq_len = True,
|
|
amateur_model: Optional[Union[Module, Tuple[Module]]] = None,
|
|
filter_kwargs: dict = dict(),
|
|
contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict(
|
|
beta = 0.5,
|
|
alpha = 0.1
|
|
),
|
|
cache_kv = True,
|
|
verbose=True,
|
|
return_prime=False,
|
|
**kwargs
|
|
):
|
|
max_seq_len, device = self.max_seq_len, prompts.device
|
|
|
|
prompts, ps = pack([prompts], '* n')
|
|
|
|
b, t = prompts.shape
|
|
|
|
|
|
|
|
seq_start_pos = None
|
|
if exists(prompt_lens):
|
|
prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value)
|
|
seq_start_pos = t - prompt_lens
|
|
|
|
|
|
|
|
out = prompts
|
|
|
|
if verbose:
|
|
print("Generating sequence of max length:", seq_len)
|
|
|
|
|
|
|
|
cache = None
|
|
|
|
|
|
|
|
if exists(amateur_model):
|
|
amateur_model = cast_tuple(amateur_model)
|
|
contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs)
|
|
|
|
assert len(amateur_model) == len(contrastive_decode_kwargs)
|
|
|
|
amateur_caches = [None] * len(amateur_model)
|
|
filter_logits_fn = identity
|
|
|
|
for i, module in enumerate(amateur_model):
|
|
if isinstance(module, AutoregressiveWrapper):
|
|
amateur_model[i] = module.net
|
|
|
|
module.eval()
|
|
|
|
|
|
|
|
for sl in range(seq_len):
|
|
|
|
if restrict_to_max_seq_len:
|
|
x = out[:, -max_seq_len:]
|
|
|
|
if exists(cache):
|
|
for inter in cache.attn_intermediates:
|
|
inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv]
|
|
|
|
logits, new_cache = self.net(
|
|
x,
|
|
return_intermediates = True,
|
|
cache = cache,
|
|
seq_start_pos = seq_start_pos,
|
|
**kwargs
|
|
)
|
|
|
|
if cache_kv and self.net.can_cache_kv:
|
|
cache = new_cache
|
|
|
|
logits = logits[:, -1]
|
|
|
|
|
|
|
|
|
|
if exists(amateur_model):
|
|
for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)):
|
|
amateur_logits, next_amateur_cache = amateur(
|
|
x,
|
|
return_intermediates = True,
|
|
cache = amateur_cache,
|
|
seq_start_pos = seq_start_pos,
|
|
**kwargs
|
|
)
|
|
|
|
amateur_logits = amateur_logits[:, -1]
|
|
|
|
assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model'
|
|
logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs)
|
|
|
|
if cache_kv and amateur.can_cache_kv:
|
|
amateur_caches[i] = next_amateur_cache
|
|
|
|
|
|
|
|
filtered_logits = filter_logits_fn(logits, **filter_kwargs)
|
|
|
|
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
|
|
|
sample = torch.multinomial(probs, 1)
|
|
|
|
out = torch.cat((out, sample), dim=-1)
|
|
|
|
if verbose:
|
|
if sl % 32 == 0:
|
|
print(sl, '/', seq_len)
|
|
|
|
if exists(eos_token):
|
|
is_eos_tokens = (out == eos_token)
|
|
|
|
if is_eos_tokens.any(dim = -1).all():
|
|
|
|
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
|
|
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
|
|
out = out.masked_fill(mask, self.pad_value)
|
|
|
|
if verbose:
|
|
print('Model called the end of sequence at:', sl, '/', seq_len)
|
|
|
|
break
|
|
|
|
if return_prime:
|
|
return out[:, :]
|
|
|
|
else:
|
|
return out[:, t:]
|
|
|
|
|
|
|
|
|
|
|
|
def compute_accuracy(self, logits, labels):
|
|
out = torch.argmax(logits, dim=-1)
|
|
out = out.flatten()
|
|
labels = labels.flatten()
|
|
|
|
mask = (labels != self.ignore_index)
|
|
out = out[mask]
|
|
labels = labels[mask]
|
|
|
|
num_right = (out == labels)
|
|
num_right = torch.sum(num_right).type(torch.float32)
|
|
|
|
acc = num_right / len(labels)
|
|
return acc
|
|
|
|
def forward(self, x, **kwargs):
|
|
seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss
|
|
|
|
inp, target = x[:, :-1], x[:, 1:]
|
|
inp = torch.where(inp == ignore_index, self.pad_value, inp)
|
|
|
|
if self.mask_prob > 0.:
|
|
rand = torch.randn(inp.shape, device = x.device)
|
|
rand[:, 0] = -torch.finfo(rand.dtype).max
|
|
num_mask = min(int(seq * self.mask_prob), seq - 1)
|
|
indices = rand.topk(num_mask, dim = -1).indices
|
|
mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool()
|
|
kwargs.update(self_attn_kv_mask = mask)
|
|
|
|
logits, cache = self.net(
|
|
inp,
|
|
return_intermediates = True,
|
|
return_attn_z_loss = add_attn_z_loss,
|
|
**kwargs
|
|
)
|
|
|
|
acc = self.compute_accuracy(logits, target)
|
|
|
|
loss = F.cross_entropy(
|
|
rearrange(logits, 'b n c -> b c n'),
|
|
target,
|
|
ignore_index = ignore_index
|
|
)
|
|
|
|
if add_attn_z_loss:
|
|
loss = loss + cache.attn_z_loss
|
|
|
|
if self.return_cache:
|
|
return loss, acc, cache
|
|
|
|
else:
|
|
return loss, acc
|
|
|
|
|
|
|
|
import math
|
|
from random import random
|
|
|
|
import torch
|
|
from torch import nn, einsum, Tensor
|
|
import torch.nn.functional as F
|
|
|
|
from functools import partial, wraps
|
|
from inspect import isfunction
|
|
from collections import namedtuple
|
|
from dataclasses import dataclass
|
|
from typing import List, Callable, Optional
|
|
|
|
from einops import rearrange, repeat, reduce, pack, unpack
|
|
from einops.layers.torch import Rearrange
|
|
|
|
|
|
|
|
DEFAULT_DIM_HEAD = 64
|
|
|
|
@dataclass
|
|
class LayerIntermediates:
|
|
hiddens: Optional[List[Tensor]] = None
|
|
attn_intermediates: Optional[List[Intermediates]] = None
|
|
layer_hiddens: Optional[List[Tensor]] = None
|
|
attn_z_loss: Optional[Tensor] = None
|
|
mems: Optional[Tensor] = None
|
|
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def default(val, d):
|
|
if exists(val):
|
|
return val
|
|
return d() if isfunction(d) else d
|
|
|
|
def cast_tuple(val, depth):
|
|
return val if isinstance(val, tuple) else (val,) * depth
|
|
|
|
def divisible_by(num, den):
|
|
return (num % den) == 0
|
|
|
|
def maybe(fn):
|
|
@wraps(fn)
|
|
def inner(x, *args, **kwargs):
|
|
if not exists(x):
|
|
return x
|
|
return fn(x, *args, **kwargs)
|
|
return inner
|
|
|
|
class always():
|
|
def __init__(self, val):
|
|
self.val = val
|
|
def __call__(self, *args, **kwargs):
|
|
return self.val
|
|
|
|
class not_equals():
|
|
def __init__(self, val):
|
|
self.val = val
|
|
def __call__(self, x, *args, **kwargs):
|
|
return x != self.val
|
|
|
|
class equals():
|
|
def __init__(self, val):
|
|
self.val = val
|
|
def __call__(self, x, *args, **kwargs):
|
|
return x == self.val
|
|
|
|
def Sequential(*modules):
|
|
return nn.Sequential(*filter(exists, modules))
|
|
|
|
|
|
|
|
def max_neg_value(tensor):
|
|
return -torch.finfo(tensor.dtype).max
|
|
|
|
def l2norm(t, groups = 1):
|
|
t = rearrange(t, '... (g d) -> ... g d', g = groups)
|
|
t = F.normalize(t, p = 2, dim = -1)
|
|
return rearrange(t, '... g d -> ... (g d)')
|
|
|
|
def pad_at_dim(t, pad, dim = -1, value = 0.):
|
|
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
|
zeros = ((0, 0) * dims_from_right)
|
|
return F.pad(t, (*zeros, *pad), value = value)
|
|
|
|
def or_reduce(masks):
|
|
head, *body = masks
|
|
for rest in body:
|
|
head = head | rest
|
|
return head
|
|
|
|
|
|
|
|
def calc_z_loss(
|
|
pre_softmax_attns: List[Tensor],
|
|
mask = None,
|
|
weight = 1.
|
|
):
|
|
|
|
|
|
|
|
|
|
lse = 0.
|
|
|
|
for attn in pre_softmax_attns:
|
|
lse = lse + attn.logsumexp(dim = -1)
|
|
|
|
loss = torch.square(lse)
|
|
loss = reduce(loss, 'b h n -> b n', 'sum')
|
|
|
|
if not exists(mask):
|
|
return loss.mean() * weight
|
|
|
|
loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5)
|
|
return loss * weight
|
|
|
|
|
|
|
|
def init_zero_(layer):
|
|
nn.init.constant_(layer.weight, 0.)
|
|
if exists(layer.bias):
|
|
nn.init.constant_(layer.bias, 0.)
|
|
|
|
|
|
|
|
def pick_and_pop(keys, d):
|
|
values = list(map(lambda key: d.pop(key), keys))
|
|
return dict(zip(keys, values))
|
|
|
|
def group_dict_by_key(cond, d):
|
|
return_val = [dict(),dict()]
|
|
for key in d.keys():
|
|
match = bool(cond(key))
|
|
ind = int(not match)
|
|
return_val[ind][key] = d[key]
|
|
return (*return_val,)
|
|
|
|
def string_begins_with(prefix, str):
|
|
return str.startswith(prefix)
|
|
|
|
def group_by_key_prefix(prefix, d):
|
|
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
|
|
|
def groupby_prefix_and_trim(prefix, d):
|
|
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
|
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
|
return kwargs_without_prefix, kwargs
|
|
|
|
|
|
|
|
def dropout_seq(seq, mask, dropout):
|
|
b, n, *_, device = *seq.shape, seq.device
|
|
logits = torch.randn(b, n, device = device)
|
|
|
|
if exists(mask):
|
|
mask_value = max_neg_value(logits)
|
|
logits = logits.masked_fill(~mask, mask_value)
|
|
|
|
keep_prob = 1. - dropout
|
|
num_keep = max(1, int(keep_prob * n))
|
|
keep_indices = logits.topk(num_keep, dim = 1).indices
|
|
|
|
batch_indices = torch.arange(b, device = device)
|
|
batch_indices = rearrange(batch_indices, 'b -> b 1')
|
|
|
|
seq = seq[batch_indices, keep_indices]
|
|
|
|
if exists(mask):
|
|
seq_counts = mask.sum(dim = -1)
|
|
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
|
|
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')
|
|
|
|
mask = mask[batch_indices, keep_indices] & keep_mask
|
|
|
|
return seq, mask
|
|
|
|
|
|
|
|
class ReluSquared(nn.Module):
|
|
def forward(self, x):
|
|
return F.relu(x) ** 2
|
|
|
|
|
|
|
|
class TokenEmbedding(nn.Module):
|
|
def __init__(self, dim, num_tokens, l2norm_embed = False):
|
|
super().__init__()
|
|
self.l2norm_embed = l2norm_embed
|
|
self.emb = nn.Embedding(num_tokens, dim)
|
|
|
|
def forward(self, x):
|
|
token_emb = self.emb(x)
|
|
return l2norm(token_emb) if self.l2norm_embed else token_emb
|
|
|
|
|
|
|
|
class AbsolutePositionalEmbedding(nn.Module):
|
|
def __init__(self, dim, max_seq_len, l2norm_embed = False):
|
|
super().__init__()
|
|
self.scale = dim ** -0.5 if not l2norm_embed else 1.
|
|
self.max_seq_len = max_seq_len
|
|
self.l2norm_embed = l2norm_embed
|
|
self.emb = nn.Embedding(max_seq_len, dim)
|
|
|
|
def forward(self, x, pos = None, seq_start_pos = None):
|
|
seq_len, device = x.shape[1], x.device
|
|
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
|
|
|
|
if not exists(pos):
|
|
pos = torch.arange(seq_len, device = device)
|
|
|
|
if exists(seq_start_pos):
|
|
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
|
|
|
|
pos_emb = self.emb(pos)
|
|
pos_emb = pos_emb * self.scale
|
|
return l2norm(pos_emb) if self.l2norm_embed else pos_emb
|
|
|
|
class ScaledSinusoidalEmbedding(nn.Module):
|
|
def __init__(self, dim, theta = 10000):
|
|
super().__init__()
|
|
assert divisible_by(dim, 2)
|
|
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
|
|
|
|
half_dim = dim // 2
|
|
freq_seq = torch.arange(half_dim).float() / half_dim
|
|
inv_freq = theta ** -freq_seq
|
|
self.register_buffer('inv_freq', inv_freq, persistent = False)
|
|
|
|
def forward(self, x, pos = None, seq_start_pos = None):
|
|
seq_len, device = x.shape[1], x.device
|
|
|
|
if not exists(pos):
|
|
pos = torch.arange(seq_len, device = device)
|
|
|
|
if exists(seq_start_pos):
|
|
pos = pos - seq_start_pos[..., None]
|
|
|
|
emb = einsum('i, j -> i j', pos, self.inv_freq)
|
|
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
|
|
return emb * self.scale
|
|
|
|
class RelativePositionBias(nn.Module):
|
|
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8):
|
|
super().__init__()
|
|
self.scale = scale
|
|
self.causal = causal
|
|
self.num_buckets = num_buckets
|
|
self.max_distance = max_distance
|
|
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
|
|
|
|
@staticmethod
|
|
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
|
|
ret = 0
|
|
n = -relative_position
|
|
if not causal:
|
|
num_buckets //= 2
|
|
ret += (n < 0).long() * num_buckets
|
|
n = torch.abs(n)
|
|
else:
|
|
n = torch.max(n, torch.zeros_like(n))
|
|
|
|
max_exact = num_buckets // 2
|
|
is_small = n < max_exact
|
|
|
|
val_if_large = max_exact + (
|
|
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
|
).long()
|
|
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
|
|
|
ret += torch.where(is_small, n, val_if_large)
|
|
return ret
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
def forward(self, i, j):
|
|
device = self.device
|
|
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device)
|
|
k_pos = torch.arange(j, dtype = torch.long, device = device)
|
|
rel_pos = k_pos[None, :] - q_pos[:, None]
|
|
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
|
|
values = self.relative_attention_bias(rp_bucket)
|
|
bias = rearrange(values, 'i j h -> h i j')
|
|
return bias * self.scale
|
|
|
|
class DynamicPositionBias(nn.Module):
|
|
def __init__(self, dim, *, heads, depth, log_distance = False, norm = False):
|
|
super().__init__()
|
|
assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1'
|
|
self.log_distance = log_distance
|
|
|
|
self.mlp = nn.ModuleList([])
|
|
|
|
self.mlp.append(Sequential(
|
|
nn.Linear(1, dim),
|
|
nn.LayerNorm(dim) if norm else None,
|
|
nn.SiLU()
|
|
))
|
|
|
|
for _ in range(depth - 1):
|
|
self.mlp.append(Sequential(
|
|
nn.Linear(dim, dim),
|
|
nn.LayerNorm(dim) if norm else None,
|
|
nn.SiLU()
|
|
))
|
|
|
|
self.mlp.append(nn.Linear(dim, heads))
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
def forward(self, i, j):
|
|
assert i == j
|
|
n, device = j, self.device
|
|
|
|
|
|
seq_arange = torch.arange(n, device = device)
|
|
context_arange = torch.arange(n, device = device)
|
|
indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j')
|
|
indices += (n - 1)
|
|
|
|
|
|
pos = torch.arange(-n + 1, n, device = device).float()
|
|
pos = rearrange(pos, '... -> ... 1')
|
|
|
|
if self.log_distance:
|
|
pos = torch.sign(pos) * torch.log(pos.abs() + 1)
|
|
|
|
for layer in self.mlp:
|
|
pos = layer(pos)
|
|
|
|
|
|
bias = pos[indices]
|
|
bias = rearrange(bias, 'i j h -> h i j')
|
|
return bias
|
|
|
|
class AlibiPositionalBias(nn.Module):
|
|
def __init__(self, heads, total_heads, **kwargs):
|
|
super().__init__()
|
|
self.heads = heads
|
|
self.total_heads = total_heads
|
|
|
|
slopes = Tensor(self._get_slopes(heads))
|
|
slopes = rearrange(slopes, 'h -> h 1 1')
|
|
self.register_buffer('slopes', slopes, persistent = False)
|
|
self.register_buffer('bias', None, persistent = False)
|
|
|
|
def get_bias(self, i, j, device):
|
|
i_arange = torch.arange(j - i, j, device = device)
|
|
j_arange = torch.arange(j, device = device)
|
|
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
|
|
return bias
|
|
|
|
@staticmethod
|
|
def _get_slopes(heads):
|
|
def get_slopes_power_of_2(n):
|
|
start = (2**(-2**-(math.log2(n)-3)))
|
|
ratio = start
|
|
return [start*ratio**i for i in range(n)]
|
|
|
|
if math.log2(heads).is_integer():
|
|
return get_slopes_power_of_2(heads)
|
|
|
|
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
|
|
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.buffers()).device
|
|
|
|
def forward(self, i, j):
|
|
h, device = self.total_heads, self.device
|
|
|
|
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
|
|
return self.bias[..., -i:, -j:]
|
|
|
|
bias = self.get_bias(i, j, device)
|
|
bias = bias * self.slopes
|
|
|
|
num_heads_unalibied = h - bias.shape[0]
|
|
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0)
|
|
self.register_buffer('bias', bias, persistent = False)
|
|
|
|
return self.bias
|
|
|
|
class RotaryEmbedding(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
use_xpos = False,
|
|
scale_base = 512,
|
|
interpolation_factor = 1.,
|
|
base = 10000,
|
|
base_rescale_factor = 1.
|
|
):
|
|
super().__init__()
|
|
|
|
|
|
|
|
base *= base_rescale_factor ** (dim / (dim - 2))
|
|
|
|
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
|
self.register_buffer('inv_freq', inv_freq)
|
|
|
|
assert interpolation_factor >= 1.
|
|
self.interpolation_factor = interpolation_factor
|
|
|
|
if not use_xpos:
|
|
self.register_buffer('scale', None)
|
|
return
|
|
|
|
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
|
|
|
self.scale_base = scale_base
|
|
self.register_buffer('scale', scale)
|
|
|
|
def forward(self, seq_len):
|
|
device = self.inv_freq.device
|
|
t = torch.arange(seq_len, device = device).type_as(self.inv_freq)
|
|
|
|
t = t / self.interpolation_factor
|
|
|
|
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
|
|
freqs = torch.cat((freqs, freqs), dim = -1)
|
|
|
|
if not exists(self.scale):
|
|
return freqs, 1.
|
|
|
|
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
|
scale = self.scale ** rearrange(power, 'n -> n 1')
|
|
scale = torch.cat((scale, scale), dim = -1)
|
|
|
|
return freqs, scale
|
|
|
|
|
|
def rotate_half(x):
|
|
x = rearrange(x, '... (j d) -> ... j d', j = 2)
|
|
x1, x2 = x.unbind(dim = -2)
|
|
return torch.cat((-x2, x1), dim = -1)
|
|
|
|
def apply_rotary_pos_emb(t, freqs, scale = 1):
|
|
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
|
freqs = freqs[-seq_len:, :]
|
|
|
|
if t.ndim == 4 and freqs.ndim == 3:
|
|
freqs = rearrange(freqs, 'b n d -> b 1 n d')
|
|
|
|
|
|
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
|
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
|
return torch.cat((t, t_unrotated), dim = -1)
|
|
|
|
|
|
|
|
class Scale(nn.Module):
|
|
def __init__(self, value, fn):
|
|
super().__init__()
|
|
self.value = value
|
|
self.fn = fn
|
|
|
|
def forward(self, x, **kwargs):
|
|
out = self.fn(x, **kwargs)
|
|
scale_fn = lambda t: t * self.value
|
|
|
|
if not isinstance(out, tuple):
|
|
return scale_fn(out)
|
|
|
|
return (scale_fn(out[0]), *out[1:])
|
|
|
|
class ScaleNorm(nn.Module):
|
|
def __init__(self, dim, eps = 1e-5):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5))
|
|
|
|
def forward(self, x):
|
|
norm = torch.norm(x, dim = -1, keepdim = True)
|
|
return x / norm.clamp(min = self.eps) * self.g
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.scale = dim ** 0.5
|
|
self.g = nn.Parameter(torch.ones(dim))
|
|
|
|
def forward(self, x):
|
|
return F.normalize(x, dim = -1) * self.scale * self.g
|
|
|
|
class SimpleRMSNorm(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.scale = dim ** 0.5
|
|
|
|
def forward(self, x):
|
|
return F.normalize(x, dim = -1) * self.scale
|
|
|
|
|
|
|
|
class Residual(nn.Module):
|
|
def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.):
|
|
super().__init__()
|
|
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
|
|
self.scale_residual_constant = scale_residual_constant
|
|
|
|
def forward(self, x, residual):
|
|
if exists(self.residual_scale):
|
|
residual = residual * self.residual_scale
|
|
|
|
if self.scale_residual_constant != 1:
|
|
residual = residual * self.scale_residual_constant
|
|
|
|
return x + residual
|
|
|
|
class GRUGating(nn.Module):
|
|
def __init__(self, dim, scale_residual = False, **kwargs):
|
|
super().__init__()
|
|
self.gru = nn.GRUCell(dim, dim)
|
|
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
|
|
|
|
def forward(self, x, residual):
|
|
if exists(self.residual_scale):
|
|
residual = residual * self.residual_scale
|
|
|
|
gated_output = self.gru(
|
|
rearrange(x, 'b n d -> (b n) d'),
|
|
rearrange(residual, 'b n d -> (b n) d')
|
|
)
|
|
|
|
return gated_output.reshape_as(x)
|
|
|
|
|
|
|
|
def shift(t, amount, mask = None):
|
|
if amount == 0:
|
|
return t
|
|
else:
|
|
amount = min(amount, t.shape[1])
|
|
|
|
if exists(mask):
|
|
t = t.masked_fill(~mask[..., None], 0.)
|
|
|
|
return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.)
|
|
|
|
class ShiftTokens(nn.Module):
|
|
def __init__(self, shifts, fn):
|
|
super().__init__()
|
|
self.fn = fn
|
|
self.shifts = tuple(shifts)
|
|
|
|
def forward(self, x, **kwargs):
|
|
mask = kwargs.get('mask', None)
|
|
shifts = self.shifts
|
|
segments = len(shifts)
|
|
feats_per_shift = x.shape[-1] // segments
|
|
splitted = x.split(feats_per_shift, dim = -1)
|
|
segments_to_shift, rest = splitted[:segments], splitted[segments:]
|
|
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
|
|
x = torch.cat((*segments_to_shift, *rest), dim = -1)
|
|
return self.fn(x, **kwargs)
|
|
|
|
|
|
|
|
class GLU(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim_in,
|
|
dim_out,
|
|
activation: Callable,
|
|
mult_bias = False
|
|
):
|
|
super().__init__()
|
|
self.act = activation
|
|
self.proj = nn.Linear(dim_in, dim_out * 2)
|
|
self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.
|
|
|
|
def forward(self, x):
|
|
x, gate = self.proj(x).chunk(2, dim = -1)
|
|
return x * self.act(gate) * self.mult_bias
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_out = None,
|
|
mult = 4,
|
|
glu = False,
|
|
glu_mult_bias = False,
|
|
swish = False,
|
|
relu_squared = False,
|
|
post_act_ln = False,
|
|
dropout = 0.,
|
|
no_bias = False,
|
|
zero_init_output = False
|
|
):
|
|
super().__init__()
|
|
inner_dim = int(dim * mult)
|
|
dim_out = default(dim_out, dim)
|
|
|
|
if relu_squared:
|
|
activation = ReluSquared()
|
|
elif swish:
|
|
activation = nn.SiLU()
|
|
else:
|
|
activation = nn.GELU()
|
|
|
|
if glu:
|
|
project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias)
|
|
else:
|
|
project_in = nn.Sequential(
|
|
nn.Linear(dim, inner_dim, bias = not no_bias),
|
|
activation
|
|
)
|
|
|
|
self.ff = Sequential(
|
|
project_in,
|
|
nn.LayerNorm(inner_dim) if post_act_ln else None,
|
|
nn.Dropout(dropout),
|
|
nn.Linear(inner_dim, dim_out, bias = not no_bias)
|
|
)
|
|
|
|
|
|
if zero_init_output:
|
|
init_zero_(self.ff[-1])
|
|
|
|
def forward(self, x):
|
|
return self.ff(x)
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
dim_head = DEFAULT_DIM_HEAD,
|
|
heads = 8,
|
|
causal = False,
|
|
flash = False,
|
|
talking_heads = False,
|
|
head_scale = False,
|
|
sparse_topk = None,
|
|
num_mem_kv = 0,
|
|
dropout = 0.,
|
|
on_attn = False,
|
|
gate_value_heads = False,
|
|
gate_values = False,
|
|
zero_init_output = False,
|
|
max_attend_past = None,
|
|
qk_norm = False,
|
|
qk_norm_groups = 1,
|
|
qk_norm_scale = 10,
|
|
qk_norm_dim_scale = False,
|
|
one_kv_head = False,
|
|
kv_heads = None,
|
|
shared_kv = False,
|
|
value_dim_head = None,
|
|
tensor_product = False,
|
|
add_zero_kv = False,
|
|
rotary_embed_values = False,
|
|
onnxable = False
|
|
):
|
|
super().__init__()
|
|
self.scale = dim_head ** -0.5
|
|
|
|
self.heads = heads
|
|
self.causal = causal
|
|
self.max_attend_past = max_attend_past
|
|
|
|
assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both'
|
|
|
|
value_dim_head = default(value_dim_head, dim_head)
|
|
kv_heads = default(kv_heads, heads)
|
|
|
|
kv_heads = 1 if one_kv_head else kv_heads
|
|
assert divisible_by(heads, kv_heads)
|
|
|
|
self.kv_heads = kv_heads
|
|
|
|
q_dim = dim_head * heads
|
|
k_dim = dim_head * kv_heads
|
|
v_dim = value_dim_head * kv_heads
|
|
out_dim = value_dim_head * heads
|
|
|
|
self.to_q = nn.Linear(dim, q_dim, bias = False)
|
|
self.to_k = nn.Linear(dim, k_dim, bias = False)
|
|
|
|
|
|
assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values'
|
|
self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None
|
|
|
|
|
|
self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None
|
|
|
|
|
|
self.to_v_gate = None
|
|
if gate_values:
|
|
self.to_v_gate = nn.Linear(dim, out_dim)
|
|
nn.init.constant_(self.to_v_gate.weight, 0)
|
|
nn.init.constant_(self.to_v_gate.bias, 10)
|
|
|
|
|
|
self.to_v_head_gate = None
|
|
if gate_value_heads:
|
|
self.to_v_head_gate = nn.Linear(dim, heads)
|
|
nn.init.constant_(self.to_v_head_gate.weight, 0)
|
|
nn.init.constant_(self.to_v_head_gate.bias, 10)
|
|
|
|
|
|
self.qk_norm = qk_norm
|
|
self.qk_norm_groups = qk_norm_groups
|
|
self.qk_norm_scale = qk_norm_scale
|
|
|
|
|
|
self.qk_norm_dim_scale = qk_norm_dim_scale
|
|
|
|
self.qk_norm_q_scale = self.qk_norm_k_scale = 1
|
|
if qk_norm and qk_norm_dim_scale:
|
|
self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
|
|
self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
|
|
|
|
assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups'
|
|
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)'
|
|
|
|
|
|
|
|
self.attend = Attend(
|
|
heads = heads,
|
|
causal = causal,
|
|
talking_heads = talking_heads,
|
|
dropout = dropout,
|
|
sparse_topk = sparse_topk,
|
|
qk_norm = qk_norm,
|
|
scale = qk_norm_scale if qk_norm else self.scale,
|
|
add_zero_kv = add_zero_kv,
|
|
flash = flash,
|
|
onnxable = onnxable
|
|
)
|
|
|
|
|
|
self.head_scale = head_scale
|
|
if head_scale:
|
|
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
|
|
|
|
|
|
self.sparse_topk = sparse_topk
|
|
|
|
|
|
self.num_mem_kv = num_mem_kv
|
|
if num_mem_kv > 0:
|
|
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
|
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
|
|
|
|
|
self.attn_on_attn = on_attn
|
|
self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False)
|
|
|
|
|
|
self.rotary_embed_values = rotary_embed_values
|
|
|
|
|
|
if zero_init_output:
|
|
init_zero_(self.to_out)
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
context = None,
|
|
mask = None,
|
|
context_mask = None,
|
|
attn_mask = None,
|
|
rel_pos = None,
|
|
rotary_pos_emb = None,
|
|
prev_attn = None,
|
|
mem = None,
|
|
return_intermediates = False,
|
|
cache: Optional[Intermediates] = None,
|
|
):
|
|
b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context)
|
|
kv_input = default(context, x)
|
|
|
|
q_input = x
|
|
k_input = kv_input
|
|
v_input = kv_input
|
|
r_input = x
|
|
|
|
if exists(mem):
|
|
k_input, mem_packed_shape = pack([mem, k_input], 'b * d')
|
|
v_input, _ = pack([mem, v_input], 'b * d')
|
|
|
|
q = self.to_q(q_input)
|
|
k = self.to_k(k_input)
|
|
v = self.to_v(v_input) if exists(self.to_v) else k
|
|
r = self.to_r(r_input) if exists(self.to_r) else None
|
|
|
|
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
|
|
|
|
k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r))
|
|
|
|
if exists(cache) and not has_context:
|
|
ck, cv = cache.cached_kv
|
|
|
|
if exists(mem):
|
|
mk, k = unpack(k, mem_packed_shape, 'b h * d')
|
|
mv, v = unpack(v, mem_packed_shape, 'b h * d')
|
|
|
|
k = torch.cat((ck, k), dim = -2)
|
|
v = torch.cat((cv, v), dim = -2)
|
|
|
|
if exists(mem):
|
|
k = torch.cat((mk, k), dim = -2)
|
|
v = torch.cat((mv, v), dim = -2)
|
|
|
|
if return_intermediates:
|
|
mem_len = mem.shape[-2] if exists(mem) else 0
|
|
cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :])
|
|
|
|
if self.qk_norm:
|
|
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
|
|
q, k = map(qk_l2norm, (q, k))
|
|
scale = self.qk_norm_scale
|
|
|
|
q = q * self.qk_norm_q_scale
|
|
k = k * self.qk_norm_k_scale
|
|
|
|
if exists(rotary_pos_emb) and not has_context:
|
|
freqs, xpos_scale = rotary_pos_emb
|
|
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)
|
|
|
|
q = apply_rotary_pos_emb(q, freqs, q_xpos_scale)
|
|
k = apply_rotary_pos_emb(k, freqs, k_xpos_scale)
|
|
|
|
if self.rotary_embed_values:
|
|
v = apply_rotary_pos_emb(v, freqs, k_xpos_scale)
|
|
|
|
input_mask = context_mask
|
|
|
|
if not exists(input_mask) and not has_context:
|
|
input_mask = mask
|
|
|
|
if self.num_mem_kv > 0:
|
|
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v))
|
|
|
|
if self.qk_norm:
|
|
mem_k = l2norm(mem_k)
|
|
mem_k = mem_k * self.qk_norm_k_scale
|
|
|
|
k = torch.cat((mem_k, k), dim = -2)
|
|
v = torch.cat((mem_v, v), dim = -2)
|
|
|
|
if exists(input_mask):
|
|
input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True)
|
|
|
|
i, j = map(lambda t: t.shape[-2], (q, k))
|
|
|
|
|
|
|
|
mask_value = max_neg_value(q)
|
|
masks = []
|
|
final_attn_mask = None
|
|
|
|
if exists(input_mask):
|
|
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
|
masks.append(~input_mask)
|
|
|
|
if exists(attn_mask):
|
|
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
|
|
if attn_mask.ndim == 2:
|
|
attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j')
|
|
elif attn_mask.ndim == 3:
|
|
attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j')
|
|
masks.append(~attn_mask)
|
|
|
|
if exists(self.max_attend_past):
|
|
range_q = torch.arange(j - i, j, device = device)
|
|
range_k = torch.arange(j, device = device)
|
|
dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j')
|
|
max_attend_past_mask = dist > self.max_attend_past
|
|
masks.append(max_attend_past_mask)
|
|
|
|
if len(masks) > 0:
|
|
final_attn_mask = ~or_reduce(masks)
|
|
|
|
|
|
|
|
attn_bias = None
|
|
if exists(rel_pos):
|
|
attn_bias = rel_pos(i, j)
|
|
|
|
|
|
|
|
out, intermediates = self.attend(
|
|
q, k, v,
|
|
mask = final_attn_mask,
|
|
attn_bias = attn_bias,
|
|
prev_attn = prev_attn
|
|
)
|
|
|
|
|
|
|
|
if exists(r):
|
|
out = out * r + out
|
|
|
|
|
|
|
|
if head_scale:
|
|
out = out * self.head_scale_params
|
|
|
|
|
|
|
|
if exists(self.to_v_head_gate):
|
|
head_gate = self.to_v_head_gate(x)
|
|
out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid()
|
|
|
|
|
|
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
|
|
|
|
|
|
if exists(self.to_v_gate):
|
|
gates = self.to_v_gate(x)
|
|
out = out * gates.sigmoid()
|
|
|
|
|
|
|
|
out = self.to_out(out)
|
|
|
|
if exists(mask):
|
|
mask = rearrange(mask, 'b n -> b n 1')
|
|
out = out.masked_fill(~mask, 0.)
|
|
|
|
if not return_intermediates:
|
|
return out
|
|
|
|
intermediates.cached_kv = cached_kv
|
|
|
|
return out, intermediates
|
|
|
|
class AttentionLayers(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
depth,
|
|
heads = 8,
|
|
causal = False,
|
|
cross_attend = False,
|
|
only_cross = False,
|
|
use_scalenorm = False,
|
|
use_rmsnorm = False,
|
|
use_simple_rmsnorm = False,
|
|
alibi_pos_bias = False,
|
|
alibi_num_heads = None,
|
|
rel_pos_bias = False,
|
|
rel_pos_num_buckets = 32,
|
|
rel_pos_max_distance = 128,
|
|
dynamic_pos_bias = False,
|
|
dynamic_pos_bias_log_distance = False,
|
|
dynamic_pos_bias_mlp_depth = 2,
|
|
dynamic_pos_bias_norm = False,
|
|
rotary_pos_emb = False,
|
|
rotary_emb_dim = None,
|
|
rotary_xpos = False,
|
|
rotary_interpolation_factor = 1.,
|
|
rotary_xpos_scale_base = 512,
|
|
rotary_base_rescale_factor = 1.,
|
|
custom_layers = None,
|
|
sandwich_coef = None,
|
|
par_ratio = None,
|
|
weight_tie_layers = False,
|
|
layers_execute_order = None,
|
|
residual_attn = False,
|
|
cross_residual_attn = False,
|
|
macaron = False,
|
|
pre_norm = True,
|
|
pre_norm_has_final_norm = True,
|
|
gate_residual = False,
|
|
scale_residual = False,
|
|
scale_residual_constant = 1.,
|
|
shift_tokens = 0,
|
|
sandwich_norm = False,
|
|
resi_dual = False,
|
|
resi_dual_scale = 1.,
|
|
zero_init_branch_output = False,
|
|
layer_dropout = 0.,
|
|
cross_attn_tokens_dropout = 0.,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
rotary_pos_emb = rotary_pos_emb or rotary_xpos
|
|
|
|
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
|
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)
|
|
|
|
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
|
|
|
self.dim = dim
|
|
self.depth = depth
|
|
self.causal = causal
|
|
self.layers = nn.ModuleList([])
|
|
|
|
self.has_pos_emb = rel_pos_bias or rotary_pos_emb
|
|
|
|
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
|
|
|
|
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
|
|
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None
|
|
|
|
assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
|
|
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
|
|
|
|
|
|
|
flash_attn = attn_kwargs.get('flash', False)
|
|
assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias'
|
|
|
|
self.rel_pos = None
|
|
if rel_pos_bias:
|
|
assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
|
|
self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance)
|
|
elif dynamic_pos_bias:
|
|
assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
|
|
self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm)
|
|
elif alibi_pos_bias:
|
|
alibi_num_heads = default(alibi_num_heads, heads)
|
|
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
|
|
self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads)
|
|
|
|
assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both'
|
|
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
|
|
|
|
if resi_dual:
|
|
pre_norm = False
|
|
|
|
self.pre_norm = pre_norm
|
|
self.sandwich_norm = sandwich_norm
|
|
|
|
self.resi_dual = resi_dual
|
|
assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.'
|
|
self.resi_dual_scale = resi_dual_scale
|
|
|
|
self.residual_attn = residual_attn
|
|
self.cross_residual_attn = cross_residual_attn
|
|
assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention'
|
|
|
|
self.cross_attend = cross_attend
|
|
|
|
assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm'
|
|
|
|
if use_scalenorm:
|
|
norm_class = ScaleNorm
|
|
elif use_rmsnorm:
|
|
norm_class = RMSNorm
|
|
elif use_simple_rmsnorm:
|
|
norm_class = SimpleRMSNorm
|
|
else:
|
|
norm_class = nn.LayerNorm
|
|
|
|
norm_fn = partial(norm_class, dim)
|
|
|
|
if cross_attend and not only_cross:
|
|
default_block = ('a', 'c', 'f')
|
|
elif cross_attend and only_cross:
|
|
default_block = ('c', 'f')
|
|
else:
|
|
default_block = ('a', 'f')
|
|
|
|
if macaron:
|
|
default_block = ('f',) + default_block
|
|
|
|
|
|
|
|
if zero_init_branch_output:
|
|
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
|
|
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
|
|
|
|
|
|
|
|
assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))]))
|
|
|
|
if weight_tie_layers:
|
|
assert not exists(layers_execute_order)
|
|
layers_execute_order = tuple(range(len(default_block))) * depth
|
|
depth = 1
|
|
|
|
|
|
|
|
if exists(custom_layers):
|
|
layer_types = custom_layers
|
|
elif exists(par_ratio):
|
|
par_depth = depth * len(default_block)
|
|
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
|
default_block = tuple(filter(not_equals('f'), default_block))
|
|
par_attn = par_depth // par_ratio
|
|
depth_cut = par_depth * 2 // 3
|
|
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
|
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
|
par_block = default_block + ('f',) * (par_width - len(default_block))
|
|
par_head = par_block * par_attn
|
|
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
|
elif exists(sandwich_coef):
|
|
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
|
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
|
else:
|
|
layer_types = default_block * depth
|
|
|
|
self.layer_types = layer_types
|
|
self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types))))
|
|
|
|
assert all([i < len(self.layer_types) for i in self.layers_execute_order])
|
|
|
|
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
|
|
|
|
|
|
|
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))
|
|
|
|
|
|
|
|
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout
|
|
|
|
|
|
|
|
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
|
|
|
|
|
|
|
|
self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity()
|
|
|
|
|
|
|
|
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
|
|
is_last_layer = ind == (len(self.layer_types) - 1)
|
|
|
|
if layer_type == 'a':
|
|
layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs)
|
|
elif layer_type == 'c':
|
|
layer = Attention(dim, heads = heads, **attn_kwargs)
|
|
elif layer_type == 'f':
|
|
layer = FeedForward(dim, **ff_kwargs)
|
|
layer = layer if not macaron else Scale(0.5, layer)
|
|
else:
|
|
raise Exception(f'invalid layer type {layer_type}')
|
|
|
|
if layer_shift_tokens > 0:
|
|
shift_range_upper = layer_shift_tokens + 1
|
|
shift_range_lower = -layer_shift_tokens if not causal else 0
|
|
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
|
|
|
|
residual_fn = GRUGating if gate_residual else Residual
|
|
residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant)
|
|
|
|
pre_branch_norm = norm_fn() if pre_norm else None
|
|
post_branch_norm = norm_fn() if sandwich_norm else None
|
|
post_main_norm = norm_fn() if not pre_norm else None
|
|
|
|
norms = nn.ModuleList([
|
|
pre_branch_norm,
|
|
post_branch_norm,
|
|
post_main_norm
|
|
])
|
|
|
|
self.layers.append(nn.ModuleList([
|
|
norms,
|
|
layer,
|
|
residual
|
|
]))
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
context = None,
|
|
mask = None,
|
|
context_mask = None,
|
|
attn_mask = None,
|
|
self_attn_kv_mask = None,
|
|
mems = None,
|
|
seq_start_pos: Optional[Tensor] = None,
|
|
cache: Optional[LayerIntermediates] = None,
|
|
cache_age = 1,
|
|
return_hiddens = False
|
|
):
|
|
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'
|
|
|
|
|
|
|
|
hiddens = []
|
|
layer_hiddens = []
|
|
intermediates = []
|
|
|
|
prev_attn = None
|
|
prev_cross_attn = None
|
|
|
|
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
|
|
|
|
|
|
|
if exists(seq_start_pos):
|
|
seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long)
|
|
left_pad_mask = seq_arange >= seq_start_pos[..., None]
|
|
|
|
if exists(self_attn_kv_mask):
|
|
self_attn_kv_mask = self_attn_kv_mask & left_pad_mask
|
|
else:
|
|
self_attn_kv_mask = left_pad_mask
|
|
|
|
|
|
|
|
rotary_pos_emb = None
|
|
|
|
if exists(self.rotary_pos_emb):
|
|
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems)))
|
|
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length)
|
|
|
|
|
|
|
|
attn_cache = []
|
|
|
|
if exists(cache):
|
|
assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))])
|
|
|
|
if cache_age > 0:
|
|
x = x[:, -cache_age:]
|
|
|
|
attn_cache = cache.attn_intermediates
|
|
|
|
iter_attn_cache = iter(attn_cache)
|
|
|
|
|
|
|
|
outer_residual = x * self.resi_dual_scale
|
|
|
|
|
|
|
|
layer_variables = (
|
|
self.layer_types,
|
|
self.layers,
|
|
self.layer_dropouts
|
|
)
|
|
|
|
layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables)
|
|
|
|
|
|
|
|
for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)):
|
|
is_last = ind == (len(self.layers) - 1)
|
|
|
|
if self.training and layer_dropout > 0. and random() < layer_dropout:
|
|
continue
|
|
|
|
if layer_type == 'a':
|
|
if return_hiddens:
|
|
hiddens.append(x)
|
|
layer_mem = mems.pop(0) if mems else None
|
|
|
|
if layer_type == 'c':
|
|
if self.training and self.cross_attn_tokens_dropout > 0.:
|
|
context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout)
|
|
|
|
inner_residual = x
|
|
|
|
if return_hiddens:
|
|
layer_hiddens.append(x)
|
|
|
|
pre_norm, post_branch_norm, post_main_norm = norm
|
|
|
|
if exists(pre_norm):
|
|
x = pre_norm(x)
|
|
|
|
if layer_type == 'a':
|
|
out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, return_intermediates = True)
|
|
elif layer_type == 'c':
|
|
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True)
|
|
elif layer_type == 'f':
|
|
out = block(x)
|
|
|
|
if self.resi_dual:
|
|
outer_residual = outer_residual + out * self.resi_dual_scale
|
|
|
|
if exists(post_branch_norm):
|
|
out = post_branch_norm(out)
|
|
|
|
x = residual_fn(out, inner_residual)
|
|
|
|
if layer_type in ('a', 'c') and return_hiddens:
|
|
intermediates.append(inter)
|
|
|
|
if layer_type == 'a' and self.residual_attn:
|
|
prev_attn = inter.pre_softmax_attn
|
|
elif layer_type == 'c' and self.cross_residual_attn:
|
|
prev_cross_attn = inter.pre_softmax_attn
|
|
|
|
if exists(post_main_norm):
|
|
x = post_main_norm(x)
|
|
|
|
if return_hiddens:
|
|
layer_hiddens.append(x)
|
|
|
|
if self.resi_dual:
|
|
x = x + self.final_norm(outer_residual)
|
|
else:
|
|
x = self.final_norm(x)
|
|
|
|
if not return_hiddens:
|
|
return x
|
|
|
|
intermediates = LayerIntermediates(
|
|
hiddens = hiddens,
|
|
attn_intermediates = intermediates,
|
|
layer_hiddens = layer_hiddens
|
|
)
|
|
|
|
return x, intermediates
|
|
|
|
class Encoder(AttentionLayers):
|
|
def __init__(self, **kwargs):
|
|
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
|
super().__init__(causal = False, **kwargs)
|
|
|
|
class Decoder(AttentionLayers):
|
|
def __init__(self, **kwargs):
|
|
assert 'causal' not in kwargs, 'cannot set causality on decoder'
|
|
super().__init__(causal = True, **kwargs)
|
|
|
|
class CrossAttender(AttentionLayers):
|
|
def __init__(self, **kwargs):
|
|
super().__init__(cross_attend = True, only_cross = True, **kwargs)
|
|
|
|
class ViTransformerWrapper(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
image_size,
|
|
patch_size,
|
|
attn_layers,
|
|
channels = 3,
|
|
num_classes = None,
|
|
post_emb_norm = False,
|
|
num_register_tokens = 0,
|
|
emb_dropout = 0.
|
|
):
|
|
super().__init__()
|
|
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
|
|
assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size'
|
|
dim = attn_layers.dim
|
|
num_patches = (image_size // patch_size) ** 2
|
|
patch_dim = channels * patch_size ** 2
|
|
|
|
self.patch_size = patch_size
|
|
|
|
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
|
|
|
|
has_register_tokens = num_register_tokens > 0
|
|
self.has_register_tokens = has_register_tokens
|
|
|
|
if has_register_tokens:
|
|
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))
|
|
|
|
self.patch_to_embedding = nn.Sequential(
|
|
nn.LayerNorm(patch_dim),
|
|
nn.Linear(patch_dim, dim),
|
|
nn.LayerNorm(dim)
|
|
)
|
|
|
|
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
|
|
self.dropout = nn.Dropout(emb_dropout)
|
|
|
|
self.attn_layers = attn_layers
|
|
|
|
self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity()
|
|
|
|
def forward(
|
|
self,
|
|
img,
|
|
return_embeddings = False
|
|
):
|
|
b, p = img.shape[0], self.patch_size
|
|
|
|
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
|
|
x = self.patch_to_embedding(x)
|
|
n = x.shape[1]
|
|
|
|
x = x + self.pos_embedding[:, :n]
|
|
|
|
x = self.post_emb_norm(x)
|
|
x = self.dropout(x)
|
|
|
|
if self.has_register_tokens:
|
|
r = repeat(self.register_tokens, 'n d -> b n d', b = b)
|
|
x, ps = pack((x, r), 'b * d')
|
|
|
|
x = self.attn_layers(x)
|
|
|
|
if self.has_register_tokens:
|
|
x, _ = unpack(x, ps, 'b * d')
|
|
|
|
if not exists(self.mlp_head) or return_embeddings:
|
|
return x
|
|
|
|
x = x.mean(dim = -2)
|
|
return self.mlp_head(x)
|
|
|
|
class TransformerWrapper(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
num_tokens,
|
|
max_seq_len,
|
|
attn_layers,
|
|
emb_dim = None,
|
|
max_mem_len = 0,
|
|
shift_mem_down = 0,
|
|
emb_dropout = 0.,
|
|
post_emb_norm = False,
|
|
num_memory_tokens = None,
|
|
memory_tokens_interspersed_every = None,
|
|
tie_embedding = False,
|
|
logits_dim = None,
|
|
use_abs_pos_emb = True,
|
|
scaled_sinu_pos_emb = False,
|
|
l2norm_embed = False,
|
|
emb_frac_gradient = 1.,
|
|
attn_z_loss_weight = 1e-4,
|
|
):
|
|
super().__init__()
|
|
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
|
|
|
dim = attn_layers.dim
|
|
emb_dim = default(emb_dim, dim)
|
|
self.emb_dim = emb_dim
|
|
self.num_tokens = num_tokens
|
|
|
|
self.max_seq_len = max_seq_len
|
|
self.max_mem_len = max_mem_len
|
|
self.shift_mem_down = shift_mem_down
|
|
|
|
self.l2norm_embed = l2norm_embed
|
|
self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed)
|
|
|
|
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
|
|
self.pos_emb = always(0)
|
|
elif scaled_sinu_pos_emb:
|
|
self.pos_emb = ScaledSinusoidalEmbedding(emb_dim)
|
|
else:
|
|
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed)
|
|
|
|
self.emb_frac_gradient = emb_frac_gradient
|
|
|
|
self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity()
|
|
self.emb_dropout = nn.Dropout(emb_dropout)
|
|
|
|
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
|
self.attn_layers = attn_layers
|
|
|
|
self.init_()
|
|
|
|
logits_dim = default(logits_dim, num_tokens)
|
|
self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t()
|
|
|
|
|
|
|
|
num_memory_tokens = default(num_memory_tokens, 0)
|
|
self.num_memory_tokens = num_memory_tokens
|
|
if num_memory_tokens > 0:
|
|
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
|
|
|
self.memory_tokens_interspersed_every = memory_tokens_interspersed_every
|
|
|
|
|
|
|
|
self.can_cache_kv = self.num_memory_tokens == 0
|
|
|
|
def init_(self):
|
|
if self.l2norm_embed:
|
|
nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
|
|
if not isinstance(self.pos_emb, always):
|
|
nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
|
|
return
|
|
|
|
nn.init.kaiming_normal_(self.token_emb.emb.weight)
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
return_embeddings = False,
|
|
return_logits_and_embeddings = False,
|
|
return_intermediates = False,
|
|
mask = None,
|
|
return_mems = False,
|
|
return_attn = False,
|
|
mems = None,
|
|
pos = None,
|
|
prepend_embeds = None,
|
|
sum_embeds = None,
|
|
return_attn_z_loss = False,
|
|
attn_z_loss_weight = 1e-4,
|
|
seq_start_pos = None,
|
|
cache: Optional[LayerIntermediates] = None,
|
|
**kwargs
|
|
):
|
|
b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient
|
|
return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss
|
|
|
|
|
|
|
|
external_pos_emb = exists(pos) and pos.dtype != torch.long
|
|
pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos
|
|
x = self.token_emb(x) + pos_emb
|
|
|
|
|
|
|
|
if exists(sum_embeds):
|
|
x = x + sum_embeds
|
|
|
|
|
|
|
|
x = self.post_emb_norm(x)
|
|
|
|
|
|
|
|
if exists(prepend_embeds):
|
|
prepend_seq, prepend_dim = prepend_embeds.shape[1:]
|
|
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions'
|
|
|
|
x = torch.cat((prepend_embeds, x), dim = -2)
|
|
|
|
|
|
|
|
if emb_frac_gradient < 1:
|
|
assert emb_frac_gradient > 0
|
|
x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient)
|
|
|
|
|
|
|
|
x = self.emb_dropout(x)
|
|
|
|
x = self.project_emb(x)
|
|
|
|
if has_memory_tokens:
|
|
mem_every = self.memory_tokens_interspersed_every
|
|
|
|
if exists(mem_every):
|
|
assert mem_every > 0
|
|
assert isinstance(self.attn_layers, Decoder), 'only for decoder'
|
|
next_seq_len = math.ceil(n / mem_every) * mem_every
|
|
|
|
x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.)
|
|
x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every)
|
|
|
|
mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0])
|
|
x, mem_packed_shape = pack((mem, x), 'b * d')
|
|
|
|
|
|
if not exists(mem_every) and exists(mask):
|
|
mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True)
|
|
|
|
if exists(mem_every):
|
|
x = rearrange(x, '(b n) m d -> b (n m) d', b = b)
|
|
|
|
if self.shift_mem_down and exists(mems):
|
|
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
|
|
mems = [*mems_r, *mems_l]
|
|
|
|
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs)
|
|
|
|
if has_memory_tokens:
|
|
if exists(mem_every):
|
|
x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems))
|
|
|
|
mem, x = unpack(x, mem_packed_shape, 'b * d')
|
|
|
|
if exists(mem_every):
|
|
x = rearrange(x, '(b n) m d -> b (n m) d', b = b)
|
|
|
|
x = x[:, :n]
|
|
|
|
if return_logits_and_embeddings:
|
|
out = (self.to_logits(x), x)
|
|
elif return_embeddings:
|
|
out = x
|
|
else:
|
|
out = self.to_logits(x)
|
|
|
|
if return_attn_z_loss:
|
|
pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates))
|
|
intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight)
|
|
return_intermediates = True
|
|
|
|
if return_mems:
|
|
hiddens = intermediates.hiddens
|
|
new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens
|
|
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
|
|
|
if not return_intermediates:
|
|
return out, new_mems
|
|
|
|
intermediates.mems = new_mems
|
|
|
|
if return_intermediates:
|
|
return out, intermediates
|
|
|
|
if return_attn:
|
|
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
|
return out, attn_maps
|
|
|
|
return out
|
|
|
|
class ContinuousTransformerWrapper(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
max_seq_len,
|
|
attn_layers,
|
|
dim_in = None,
|
|
dim_out = None,
|
|
emb_dim = None,
|
|
max_mem_len = 0,
|
|
post_emb_norm = False,
|
|
emb_dropout = 0.,
|
|
use_abs_pos_emb = True,
|
|
scaled_sinu_pos_emb = False
|
|
):
|
|
super().__init__()
|
|
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
|
|
|
dim = attn_layers.dim
|
|
|
|
self.max_seq_len = max_seq_len
|
|
|
|
self.max_mem_len = max_mem_len
|
|
|
|
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
|
|
self.pos_emb = always(0)
|
|
elif scaled_sinu_pos_emb:
|
|
self.pos_emb = ScaledSinusoidalEmbedding(dim)
|
|
else:
|
|
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len)
|
|
|
|
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
|
|
self.emb_dropout = nn.Dropout(emb_dropout)
|
|
|
|
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity()
|
|
|
|
self.attn_layers = attn_layers
|
|
|
|
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity()
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
return_embeddings = False,
|
|
return_intermediates = False,
|
|
return_mems = False,
|
|
mask = None,
|
|
return_attn = False,
|
|
mems = None,
|
|
pos = None,
|
|
prepend_embeds = None,
|
|
**kwargs
|
|
):
|
|
x = self.project_in(x)
|
|
x = x + self.pos_emb(x, pos = pos)
|
|
|
|
x = self.post_emb_norm(x)
|
|
|
|
|
|
|
|
if exists(prepend_embeds):
|
|
_, prepend_dim = prepend_embeds.shape[1:]
|
|
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions'
|
|
|
|
x = torch.cat((prepend_embeds, x), dim = -2)
|
|
|
|
x = self.emb_dropout(x)
|
|
|
|
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs)
|
|
|
|
out = self.project_out(x) if not return_embeddings else x
|
|
|
|
if return_intermediates:
|
|
return out, intermediates
|
|
|
|
if return_mems:
|
|
hiddens = intermediates.hiddens
|
|
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens))
|
|
return out, new_mems
|
|
|
|
if return_attn:
|
|
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
|
return out, attn_maps
|
|
|
|
return out
|
|
|
|
class XTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim,
|
|
tie_token_emb = False,
|
|
ignore_index = -100,
|
|
pad_value = 0,
|
|
cross_attn_tokens_dropout = 0.,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs)
|
|
dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs)
|
|
|
|
assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword'
|
|
enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs)
|
|
enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0)
|
|
enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None)
|
|
enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False)
|
|
enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True)
|
|
|
|
dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs)
|
|
dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0)
|
|
dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False)
|
|
dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True)
|
|
|
|
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout
|
|
|
|
self.encoder = TransformerWrapper(
|
|
**enc_transformer_kwargs,
|
|
attn_layers = Encoder(dim = dim, **enc_kwargs)
|
|
)
|
|
|
|
self.decoder = TransformerWrapper(
|
|
**dec_transformer_kwargs,
|
|
attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs)
|
|
)
|
|
|
|
if tie_token_emb:
|
|
self.decoder.token_emb = self.encoder.token_emb
|
|
|
|
self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value)
|
|
|
|
@torch.no_grad()
|
|
def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs):
|
|
encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True)
|
|
return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs)
|
|
|
|
def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None):
|
|
|
|
if exists(src_prepend_embeds) and exists(mask):
|
|
mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True)
|
|
|
|
enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True)
|
|
|
|
if self.training and self.cross_attn_tokens_dropout > 0:
|
|
enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout)
|
|
|
|
out = self.decoder(tgt, context = enc, context_mask = mask)
|
|
return out
|
|
|