|
|
|
|
|
|
|
r'''############################################################################### |
|
################################################################################### |
|
# |
|
# |
|
# Tegridy MIDI X Module (TMIDI X / tee-midi eks) |
|
# Version 1.0 |
|
# |
|
# NOTE: TMIDI X Module starts after the partial MIDI.py module @ line 1342 |
|
# |
|
# Based upon MIDI.py module v.6.7. by Peter Billam / pjb.com.au |
|
# |
|
# Project Los Angeles |
|
# |
|
# Tegridy Code 2021 |
|
# |
|
# https://github.com/Tegridy-Code/Project-Los-Angeles |
|
# |
|
# |
|
################################################################################### |
|
################################################################################### |
|
# Copyright 2021 Project Los Angeles / Tegridy Code |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
################################################################################### |
|
################################################################################### |
|
# |
|
# PARTIAL MIDI.py Module v.6.7. by Peter Billam |
|
# Please see TMIDI 2.3/tegridy-tools repo for full MIDI.py module code |
|
# |
|
# Or you can always download the latest full version from: |
|
# |
|
# https://pjb.com.au/ |
|
# https://peterbillam.gitlab.io/miditools/ |
|
# |
|
# Copyright 2020 Peter Billam |
|
# |
|
################################################################################### |
|
###################################################################################''' |
|
|
|
import sys, struct, copy |
|
Version = '6.7' |
|
VersionDate = '20201120' |
|
|
|
_previous_warning = '' |
|
_previous_times = 0 |
|
|
|
|
|
def opus2midi(opus=[], text_encoding='ISO-8859-1'): |
|
r'''The argument is a list: the first item in the list is the "ticks" |
|
parameter, the others are the tracks. Each track is a list |
|
of midi-events, and each event is itself a list; see above. |
|
opus2midi() returns a bytestring of the MIDI, which can then be |
|
written either to a file opened in binary mode (mode='wb'), |
|
or to stdout by means of: sys.stdout.buffer.write() |
|
|
|
my_opus = [ |
|
96, |
|
[ # track 0: |
|
['patch_change', 0, 1, 8], # and these are the events... |
|
['note_on', 5, 1, 25, 96], |
|
['note_off', 96, 1, 25, 0], |
|
['note_on', 0, 1, 29, 96], |
|
['note_off', 96, 1, 29, 0], |
|
], # end of track 0 |
|
] |
|
my_midi = opus2midi(my_opus) |
|
sys.stdout.buffer.write(my_midi) |
|
''' |
|
if len(opus) < 2: |
|
opus=[1000, [],] |
|
tracks = copy.deepcopy(opus) |
|
ticks = int(tracks.pop(0)) |
|
ntracks = len(tracks) |
|
if ntracks == 1: |
|
format = 0 |
|
else: |
|
format = 1 |
|
|
|
my_midi = b"MThd\x00\x00\x00\x06"+struct.pack('>HHH',format,ntracks,ticks) |
|
for track in tracks: |
|
events = _encode(track, text_encoding=text_encoding) |
|
my_midi += b'MTrk' + struct.pack('>I',len(events)) + events |
|
_clean_up_warnings() |
|
return my_midi |
|
|
|
|
|
def score2opus(score=None, text_encoding='ISO-8859-1'): |
|
r''' |
|
The argument is a list: the first item in the list is the "ticks" |
|
parameter, the others are the tracks. Each track is a list |
|
of score-events, and each event is itself a list. A score-event |
|
is similar to an opus-event (see above), except that in a score: |
|
1) the times are expressed as an absolute number of ticks |
|
from the track's start time |
|
2) the pairs of 'note_on' and 'note_off' events in an "opus" |
|
are abstracted into a single 'note' event in a "score": |
|
['note', start_time, duration, channel, pitch, velocity] |
|
score2opus() returns a list specifying the equivalent "opus". |
|
|
|
my_score = [ |
|
96, |
|
[ # track 0: |
|
['patch_change', 0, 1, 8], |
|
['note', 5, 96, 1, 25, 96], |
|
['note', 101, 96, 1, 29, 96] |
|
], # end of track 0 |
|
] |
|
my_opus = score2opus(my_score) |
|
''' |
|
if len(score) < 2: |
|
score=[1000, [],] |
|
tracks = copy.deepcopy(score) |
|
ticks = int(tracks.pop(0)) |
|
opus_tracks = [] |
|
for scoretrack in tracks: |
|
time2events = dict([]) |
|
for scoreevent in scoretrack: |
|
if scoreevent[0] == 'note': |
|
note_on_event = ['note_on',scoreevent[1], |
|
scoreevent[3],scoreevent[4],scoreevent[5]] |
|
note_off_event = ['note_off',scoreevent[1]+scoreevent[2], |
|
scoreevent[3],scoreevent[4],scoreevent[5]] |
|
if time2events.get(note_on_event[1]): |
|
time2events[note_on_event[1]].append(note_on_event) |
|
else: |
|
time2events[note_on_event[1]] = [note_on_event,] |
|
if time2events.get(note_off_event[1]): |
|
time2events[note_off_event[1]].append(note_off_event) |
|
else: |
|
time2events[note_off_event[1]] = [note_off_event,] |
|
continue |
|
if time2events.get(scoreevent[1]): |
|
time2events[scoreevent[1]].append(scoreevent) |
|
else: |
|
time2events[scoreevent[1]] = [scoreevent,] |
|
|
|
sorted_times = [] |
|
for k in time2events.keys(): |
|
sorted_times.append(k) |
|
sorted_times.sort() |
|
|
|
sorted_events = [] |
|
for time in sorted_times: |
|
sorted_events.extend(time2events[time]) |
|
|
|
abs_time = 0 |
|
for event in sorted_events: |
|
delta_time = event[1] - abs_time |
|
abs_time = event[1] |
|
event[1] = delta_time |
|
opus_tracks.append(sorted_events) |
|
opus_tracks.insert(0,ticks) |
|
_clean_up_warnings() |
|
return opus_tracks |
|
|
|
def score2midi(score=None, text_encoding='ISO-8859-1'): |
|
r''' |
|
Translates a "score" into MIDI, using score2opus() then opus2midi() |
|
''' |
|
return opus2midi(score2opus(score, text_encoding), text_encoding) |
|
|
|
|
|
|
|
def midi2opus(midi=b'', do_not_check_MIDI_signature=False): |
|
r'''Translates MIDI into a "opus". For a description of the |
|
"opus" format, see opus2midi() |
|
''' |
|
my_midi=bytearray(midi) |
|
if len(my_midi) < 4: |
|
_clean_up_warnings() |
|
return [1000,[],] |
|
id = bytes(my_midi[0:4]) |
|
if id != b'MThd': |
|
_warn("midi2opus: midi starts with "+str(id)+" instead of 'MThd'") |
|
_clean_up_warnings() |
|
if do_not_check_MIDI_signature == False: |
|
return [1000,[],] |
|
[length, format, tracks_expected, ticks] = struct.unpack( |
|
'>IHHH', bytes(my_midi[4:14])) |
|
if length != 6: |
|
_warn("midi2opus: midi header length was "+str(length)+" instead of 6") |
|
_clean_up_warnings() |
|
return [1000,[],] |
|
my_opus = [ticks,] |
|
my_midi = my_midi[14:] |
|
track_num = 1 |
|
while len(my_midi) >= 8: |
|
track_type = bytes(my_midi[0:4]) |
|
if track_type != b'MTrk': |
|
|
|
pass |
|
[track_length] = struct.unpack('>I', my_midi[4:8]) |
|
my_midi = my_midi[8:] |
|
if track_length > len(my_midi): |
|
_warn('midi2opus: track #'+str(track_num)+' length '+str(track_length)+' is too large') |
|
_clean_up_warnings() |
|
return my_opus |
|
my_midi_track = my_midi[0:track_length] |
|
my_track = _decode(my_midi_track) |
|
my_opus.append(my_track) |
|
my_midi = my_midi[track_length:] |
|
track_num += 1 |
|
_clean_up_warnings() |
|
return my_opus |
|
|
|
def opus2score(opus=[]): |
|
r'''For a description of the "opus" and "score" formats, |
|
see opus2midi() and score2opus(). |
|
''' |
|
if len(opus) < 2: |
|
_clean_up_warnings() |
|
return [1000,[],] |
|
tracks = copy.deepcopy(opus) |
|
ticks = int(tracks.pop(0)) |
|
score = [ticks,] |
|
for opus_track in tracks: |
|
ticks_so_far = 0 |
|
score_track = [] |
|
chapitch2note_on_events = dict([]) |
|
for opus_event in opus_track: |
|
ticks_so_far += opus_event[1] |
|
if opus_event[0] == 'note_off' or (opus_event[0] == 'note_on' and opus_event[4] == 0): |
|
cha = opus_event[2] |
|
pitch = opus_event[3] |
|
key = cha*128 + pitch |
|
if chapitch2note_on_events.get(key): |
|
new_event = chapitch2note_on_events[key].pop(0) |
|
new_event[2] = ticks_so_far - new_event[1] |
|
score_track.append(new_event) |
|
elif pitch > 127: |
|
pass |
|
else: |
|
pass |
|
elif opus_event[0] == 'note_on': |
|
cha = opus_event[2] |
|
pitch = opus_event[3] |
|
key = cha*128 + pitch |
|
new_event = ['note',ticks_so_far,0,cha,pitch, opus_event[4]] |
|
if chapitch2note_on_events.get(key): |
|
chapitch2note_on_events[key].append(new_event) |
|
else: |
|
chapitch2note_on_events[key] = [new_event,] |
|
else: |
|
opus_event[1] = ticks_so_far |
|
score_track.append(opus_event) |
|
|
|
for chapitch in chapitch2note_on_events: |
|
note_on_events = chapitch2note_on_events[chapitch] |
|
for new_e in note_on_events: |
|
new_e[2] = ticks_so_far - new_e[1] |
|
score_track.append(new_e) |
|
pass |
|
score.append(score_track) |
|
_clean_up_warnings() |
|
return score |
|
|
|
def midi2score(midi=b'', do_not_check_MIDI_signature=False): |
|
r''' |
|
Translates MIDI into a "score", using midi2opus() then opus2score() |
|
''' |
|
return opus2score(midi2opus(midi, do_not_check_MIDI_signature)) |
|
|
|
def midi2ms_score(midi=b'', do_not_check_MIDI_signature=False): |
|
r''' |
|
Translates MIDI into a "score" with one beat per second and one |
|
tick per millisecond, using midi2opus() then to_millisecs() |
|
then opus2score() |
|
''' |
|
return opus2score(to_millisecs(midi2opus(midi, do_not_check_MIDI_signature))) |
|
|
|
def midi2single_track_ms_score(midi_path_or_bytes, |
|
recalculate_channels = False, |
|
pass_old_timings_events= False, |
|
verbose = False, |
|
do_not_check_MIDI_signature=False |
|
): |
|
r''' |
|
Translates MIDI into a single track "score" with 16 instruments and one beat per second and one |
|
tick per millisecond |
|
''' |
|
|
|
if type(midi_path_or_bytes) == bytes: |
|
midi_data = midi_path_or_bytes |
|
|
|
elif type(midi_path_or_bytes) == str: |
|
midi_data = open(midi_path_or_bytes, 'rb').read() |
|
|
|
score = midi2score(midi_data, do_not_check_MIDI_signature) |
|
|
|
if recalculate_channels: |
|
|
|
events_matrixes = [] |
|
|
|
itrack = 1 |
|
events_matrixes_channels = [] |
|
while itrack < len(score): |
|
events_matrix = [] |
|
for event in score[itrack]: |
|
if event[0] == 'note' and event[3] != 9: |
|
event[3] = (16 * (itrack-1)) + event[3] |
|
if event[3] not in events_matrixes_channels: |
|
events_matrixes_channels.append(event[3]) |
|
|
|
events_matrix.append(event) |
|
events_matrixes.append(events_matrix) |
|
itrack += 1 |
|
|
|
events_matrix1 = [] |
|
for e in events_matrixes: |
|
events_matrix1.extend(e) |
|
|
|
if verbose: |
|
if len(events_matrixes_channels) > 16: |
|
print('MIDI has', len(events_matrixes_channels), 'instruments!', len(events_matrixes_channels) - 16, 'instrument(s) will be removed!') |
|
|
|
for e in events_matrix1: |
|
if e[0] == 'note' and e[3] != 9: |
|
if e[3] in events_matrixes_channels[:15]: |
|
if events_matrixes_channels[:15].index(e[3]) < 9: |
|
e[3] = events_matrixes_channels[:15].index(e[3]) |
|
else: |
|
e[3] = events_matrixes_channels[:15].index(e[3])+1 |
|
else: |
|
events_matrix1.remove(e) |
|
|
|
if e[0] in ['patch_change', 'control_change', 'channel_after_touch', 'key_after_touch', 'pitch_wheel_change'] and e[2] != 9: |
|
if e[2] in [e % 16 for e in events_matrixes_channels[:15]]: |
|
if [e % 16 for e in events_matrixes_channels[:15]].index(e[2]) < 9: |
|
e[2] = [e % 16 for e in events_matrixes_channels[:15]].index(e[2]) |
|
else: |
|
e[2] = [e % 16 for e in events_matrixes_channels[:15]].index(e[2])+1 |
|
else: |
|
events_matrix1.remove(e) |
|
|
|
else: |
|
events_matrix1 = [] |
|
itrack = 1 |
|
|
|
while itrack < len(score): |
|
for event in score[itrack]: |
|
events_matrix1.append(event) |
|
itrack += 1 |
|
|
|
opus = score2opus([score[0], events_matrix1]) |
|
ms_score = opus2score(to_millisecs(opus, pass_old_timings_events=pass_old_timings_events)) |
|
|
|
return ms_score |
|
|
|
|
|
|
|
def to_millisecs(old_opus=None, desired_time_in_ms=1, pass_old_timings_events = False): |
|
r'''Recallibrates all the times in an "opus" to use one beat |
|
per second and one tick per millisecond. This makes it |
|
hard to retrieve any information about beats or barlines, |
|
but it does make it easy to mix different scores together. |
|
''' |
|
if old_opus == None: |
|
return [1000 * desired_time_in_ms,[],] |
|
try: |
|
old_tpq = int(old_opus[0]) |
|
except IndexError: |
|
_warn('to_millisecs: the opus '+str(type(old_opus))+' has no elements') |
|
return [1000 * desired_time_in_ms,[],] |
|
new_opus = [1000 * desired_time_in_ms,] |
|
|
|
ticks2tempo = {} |
|
itrack = 1 |
|
while itrack < len(old_opus): |
|
ticks_so_far = 0 |
|
for old_event in old_opus[itrack]: |
|
if old_event[0] == 'note': |
|
raise TypeError('to_millisecs needs an opus, not a score') |
|
ticks_so_far += old_event[1] |
|
if old_event[0] == 'set_tempo': |
|
ticks2tempo[ticks_so_far] = old_event[2] |
|
itrack += 1 |
|
|
|
tempo_ticks = [] |
|
for k in ticks2tempo.keys(): |
|
tempo_ticks.append(k) |
|
tempo_ticks.sort() |
|
|
|
|
|
itrack = 1 |
|
while itrack < len(old_opus): |
|
ms_per_old_tick = 400 / old_tpq |
|
i_tempo_ticks = 0 |
|
ticks_so_far = 0 |
|
ms_so_far = 0.0 |
|
previous_ms_so_far = 0.0 |
|
|
|
if pass_old_timings_events: |
|
new_track = [['set_tempo',0,1000000 * desired_time_in_ms],['old_tpq', 0, old_tpq]] |
|
else: |
|
new_track = [['set_tempo',0,1000000 * desired_time_in_ms],] |
|
for old_event in old_opus[itrack]: |
|
|
|
|
|
event_delta_ticks = old_event[1] * desired_time_in_ms |
|
if (i_tempo_ticks < len(tempo_ticks) and |
|
tempo_ticks[i_tempo_ticks] < (ticks_so_far + old_event[1]) * desired_time_in_ms): |
|
delta_ticks = tempo_ticks[i_tempo_ticks] - ticks_so_far |
|
ms_so_far += (ms_per_old_tick * delta_ticks * desired_time_in_ms) |
|
ticks_so_far = tempo_ticks[i_tempo_ticks] |
|
ms_per_old_tick = ticks2tempo[ticks_so_far] / (1000.0*old_tpq * desired_time_in_ms) |
|
i_tempo_ticks += 1 |
|
event_delta_ticks -= delta_ticks |
|
new_event = copy.deepcopy(old_event) |
|
ms_so_far += (ms_per_old_tick * old_event[1] * desired_time_in_ms) |
|
new_event[1] = round(ms_so_far - previous_ms_so_far) |
|
|
|
if pass_old_timings_events: |
|
if old_event[0] != 'set_tempo': |
|
previous_ms_so_far = ms_so_far |
|
new_track.append(new_event) |
|
else: |
|
new_event[0] = 'old_set_tempo' |
|
previous_ms_so_far = ms_so_far |
|
new_track.append(new_event) |
|
else: |
|
if old_event[0] != 'set_tempo': |
|
previous_ms_so_far = ms_so_far |
|
new_track.append(new_event) |
|
ticks_so_far += event_delta_ticks |
|
new_opus.append(new_track) |
|
itrack += 1 |
|
_clean_up_warnings() |
|
return new_opus |
|
|
|
def event2alsaseq(event=None): |
|
r'''Converts an event into the format needed by the alsaseq module, |
|
http://pp.com.mx/python/alsaseq |
|
The type of track (opus or score) is autodetected. |
|
''' |
|
pass |
|
|
|
def grep(score=None, channels=None): |
|
r'''Returns a "score" containing only the channels specified |
|
''' |
|
if score == None: |
|
return [1000,[],] |
|
ticks = score[0] |
|
new_score = [ticks,] |
|
if channels == None: |
|
return new_score |
|
channels = set(channels) |
|
global Event2channelindex |
|
itrack = 1 |
|
while itrack < len(score): |
|
new_score.append([]) |
|
for event in score[itrack]: |
|
channel_index = Event2channelindex.get(event[0], False) |
|
if channel_index: |
|
if event[channel_index] in channels: |
|
new_score[itrack].append(event) |
|
else: |
|
new_score[itrack].append(event) |
|
itrack += 1 |
|
return new_score |
|
|
|
def play_score(score=None): |
|
r'''Converts the "score" to midi, and feeds it into 'aplaymidi -' |
|
''' |
|
if score == None: |
|
return |
|
import subprocess |
|
pipe = subprocess.Popen(['aplaymidi','-'], stdin=subprocess.PIPE) |
|
if score_type(score) == 'opus': |
|
pipe.stdin.write(opus2midi(score)) |
|
else: |
|
pipe.stdin.write(score2midi(score)) |
|
pipe.stdin.close() |
|
|
|
def score2stats(opus_or_score=None): |
|
r'''Returns a dict of some basic stats about the score, like |
|
bank_select (list of tuples (msb,lsb)), |
|
channels_by_track (list of lists), channels_total (set), |
|
general_midi_mode (list), |
|
ntracks, nticks, patch_changes_by_track (list of dicts), |
|
num_notes_by_channel (list of numbers), |
|
patch_changes_total (set), |
|
percussion (dict histogram of channel 9 events), |
|
pitches (dict histogram of pitches on channels other than 9), |
|
pitch_range_by_track (list, by track, of two-member-tuples), |
|
pitch_range_sum (sum over tracks of the pitch_ranges), |
|
''' |
|
bank_select_msb = -1 |
|
bank_select_lsb = -1 |
|
bank_select = [] |
|
channels_by_track = [] |
|
channels_total = set([]) |
|
general_midi_mode = [] |
|
num_notes_by_channel = dict([]) |
|
patches_used_by_track = [] |
|
patches_used_total = set([]) |
|
patch_changes_by_track = [] |
|
patch_changes_total = set([]) |
|
percussion = dict([]) |
|
pitches = dict([]) |
|
pitch_range_sum = 0 |
|
pitch_range_by_track = [] |
|
is_a_score = True |
|
if opus_or_score == None: |
|
return {'bank_select':[], 'channels_by_track':[], 'channels_total':[], |
|
'general_midi_mode':[], 'ntracks':0, 'nticks':0, |
|
'num_notes_by_channel':dict([]), |
|
'patch_changes_by_track':[], 'patch_changes_total':[], |
|
'percussion':{}, 'pitches':{}, 'pitch_range_by_track':[], |
|
'ticks_per_quarter':0, 'pitch_range_sum':0} |
|
ticks_per_quarter = opus_or_score[0] |
|
i = 1 |
|
nticks = 0 |
|
while i < len(opus_or_score): |
|
highest_pitch = 0 |
|
lowest_pitch = 128 |
|
channels_this_track = set([]) |
|
patch_changes_this_track = dict({}) |
|
for event in opus_or_score[i]: |
|
if event[0] == 'note': |
|
num_notes_by_channel[event[3]] = num_notes_by_channel.get(event[3],0) + 1 |
|
if event[3] == 9: |
|
percussion[event[4]] = percussion.get(event[4],0) + 1 |
|
else: |
|
pitches[event[4]] = pitches.get(event[4],0) + 1 |
|
if event[4] > highest_pitch: |
|
highest_pitch = event[4] |
|
if event[4] < lowest_pitch: |
|
lowest_pitch = event[4] |
|
channels_this_track.add(event[3]) |
|
channels_total.add(event[3]) |
|
finish_time = event[1] + event[2] |
|
if finish_time > nticks: |
|
nticks = finish_time |
|
elif event[0] == 'note_off' or (event[0] == 'note_on' and event[4] == 0): |
|
finish_time = event[1] |
|
if finish_time > nticks: |
|
nticks = finish_time |
|
elif event[0] == 'note_on': |
|
is_a_score = False |
|
num_notes_by_channel[event[2]] = num_notes_by_channel.get(event[2],0) + 1 |
|
if event[2] == 9: |
|
percussion[event[3]] = percussion.get(event[3],0) + 1 |
|
else: |
|
pitches[event[3]] = pitches.get(event[3],0) + 1 |
|
if event[3] > highest_pitch: |
|
highest_pitch = event[3] |
|
if event[3] < lowest_pitch: |
|
lowest_pitch = event[3] |
|
channels_this_track.add(event[2]) |
|
channels_total.add(event[2]) |
|
elif event[0] == 'patch_change': |
|
patch_changes_this_track[event[2]] = event[3] |
|
patch_changes_total.add(event[3]) |
|
elif event[0] == 'control_change': |
|
if event[3] == 0: |
|
bank_select_msb = event[4] |
|
elif event[3] == 32: |
|
bank_select_lsb = event[4] |
|
if bank_select_msb >= 0 and bank_select_lsb >= 0: |
|
bank_select.append((bank_select_msb,bank_select_lsb)) |
|
bank_select_msb = -1 |
|
bank_select_lsb = -1 |
|
elif event[0] == 'sysex_f0': |
|
if _sysex2midimode.get(event[2], -1) >= 0: |
|
general_midi_mode.append(_sysex2midimode.get(event[2])) |
|
if is_a_score: |
|
if event[1] > nticks: |
|
nticks = event[1] |
|
else: |
|
nticks += event[1] |
|
if lowest_pitch == 128: |
|
lowest_pitch = 0 |
|
channels_by_track.append(channels_this_track) |
|
patch_changes_by_track.append(patch_changes_this_track) |
|
pitch_range_by_track.append((lowest_pitch,highest_pitch)) |
|
pitch_range_sum += (highest_pitch-lowest_pitch) |
|
i += 1 |
|
|
|
return {'bank_select':bank_select, |
|
'channels_by_track':channels_by_track, |
|
'channels_total':channels_total, |
|
'general_midi_mode':general_midi_mode, |
|
'ntracks':len(opus_or_score)-1, |
|
'nticks':nticks, |
|
'num_notes_by_channel':num_notes_by_channel, |
|
'patch_changes_by_track':patch_changes_by_track, |
|
'patch_changes_total':patch_changes_total, |
|
'percussion':percussion, |
|
'pitches':pitches, |
|
'pitch_range_by_track':pitch_range_by_track, |
|
'pitch_range_sum':pitch_range_sum, |
|
'ticks_per_quarter':ticks_per_quarter} |
|
|
|
|
|
|
|
_sysex2midimode = { |
|
"\x7E\x7F\x09\x01\xF7": 1, |
|
"\x7E\x7F\x09\x02\xF7": 0, |
|
"\x7E\x7F\x09\x03\xF7": 2, |
|
} |
|
|
|
|
|
MIDI_events = tuple('''note_off note_on key_after_touch |
|
control_change patch_change channel_after_touch |
|
pitch_wheel_change'''.split()) |
|
|
|
Text_events = tuple('''text_event copyright_text_event |
|
track_name instrument_name lyric marker cue_point text_event_08 |
|
text_event_09 text_event_0a text_event_0b text_event_0c |
|
text_event_0d text_event_0e text_event_0f'''.split()) |
|
|
|
Nontext_meta_events = tuple('''end_track set_tempo |
|
smpte_offset time_signature key_signature sequencer_specific |
|
raw_meta_event sysex_f0 sysex_f7 song_position song_select |
|
tune_request'''.split()) |
|
|
|
|
|
|
|
Meta_events = Text_events + Nontext_meta_events |
|
All_events = MIDI_events + Meta_events |
|
|
|
|
|
Number2patch = { |
|
0:'Acoustic Grand', |
|
1:'Bright Acoustic', |
|
2:'Electric Grand', |
|
3:'Honky-Tonk', |
|
4:'Electric Piano 1', |
|
5:'Electric Piano 2', |
|
6:'Harpsichord', |
|
7:'Clav', |
|
8:'Celesta', |
|
9:'Glockenspiel', |
|
10:'Music Box', |
|
11:'Vibraphone', |
|
12:'Marimba', |
|
13:'Xylophone', |
|
14:'Tubular Bells', |
|
15:'Dulcimer', |
|
16:'Drawbar Organ', |
|
17:'Percussive Organ', |
|
18:'Rock Organ', |
|
19:'Church Organ', |
|
20:'Reed Organ', |
|
21:'Accordion', |
|
22:'Harmonica', |
|
23:'Tango Accordion', |
|
24:'Acoustic Guitar(nylon)', |
|
25:'Acoustic Guitar(steel)', |
|
26:'Electric Guitar(jazz)', |
|
27:'Electric Guitar(clean)', |
|
28:'Electric Guitar(muted)', |
|
29:'Overdriven Guitar', |
|
30:'Distortion Guitar', |
|
31:'Guitar Harmonics', |
|
32:'Acoustic Bass', |
|
33:'Electric Bass(finger)', |
|
34:'Electric Bass(pick)', |
|
35:'Fretless Bass', |
|
36:'Slap Bass 1', |
|
37:'Slap Bass 2', |
|
38:'Synth Bass 1', |
|
39:'Synth Bass 2', |
|
40:'Violin', |
|
41:'Viola', |
|
42:'Cello', |
|
43:'Contrabass', |
|
44:'Tremolo Strings', |
|
45:'Pizzicato Strings', |
|
46:'Orchestral Harp', |
|
47:'Timpani', |
|
48:'String Ensemble 1', |
|
49:'String Ensemble 2', |
|
50:'SynthStrings 1', |
|
51:'SynthStrings 2', |
|
52:'Choir Aahs', |
|
53:'Voice Oohs', |
|
54:'Synth Voice', |
|
55:'Orchestra Hit', |
|
56:'Trumpet', |
|
57:'Trombone', |
|
58:'Tuba', |
|
59:'Muted Trumpet', |
|
60:'French Horn', |
|
61:'Brass Section', |
|
62:'SynthBrass 1', |
|
63:'SynthBrass 2', |
|
64:'Soprano Sax', |
|
65:'Alto Sax', |
|
66:'Tenor Sax', |
|
67:'Baritone Sax', |
|
68:'Oboe', |
|
69:'English Horn', |
|
70:'Bassoon', |
|
71:'Clarinet', |
|
72:'Piccolo', |
|
73:'Flute', |
|
74:'Recorder', |
|
75:'Pan Flute', |
|
76:'Blown Bottle', |
|
77:'Skakuhachi', |
|
78:'Whistle', |
|
79:'Ocarina', |
|
80:'Lead 1 (square)', |
|
81:'Lead 2 (sawtooth)', |
|
82:'Lead 3 (calliope)', |
|
83:'Lead 4 (chiff)', |
|
84:'Lead 5 (charang)', |
|
85:'Lead 6 (voice)', |
|
86:'Lead 7 (fifths)', |
|
87:'Lead 8 (bass+lead)', |
|
88:'Pad 1 (new age)', |
|
89:'Pad 2 (warm)', |
|
90:'Pad 3 (polysynth)', |
|
91:'Pad 4 (choir)', |
|
92:'Pad 5 (bowed)', |
|
93:'Pad 6 (metallic)', |
|
94:'Pad 7 (halo)', |
|
95:'Pad 8 (sweep)', |
|
96:'FX 1 (rain)', |
|
97:'FX 2 (soundtrack)', |
|
98:'FX 3 (crystal)', |
|
99:'FX 4 (atmosphere)', |
|
100:'FX 5 (brightness)', |
|
101:'FX 6 (goblins)', |
|
102:'FX 7 (echoes)', |
|
103:'FX 8 (sci-fi)', |
|
104:'Sitar', |
|
105:'Banjo', |
|
106:'Shamisen', |
|
107:'Koto', |
|
108:'Kalimba', |
|
109:'Bagpipe', |
|
110:'Fiddle', |
|
111:'Shanai', |
|
112:'Tinkle Bell', |
|
113:'Agogo', |
|
114:'Steel Drums', |
|
115:'Woodblock', |
|
116:'Taiko Drum', |
|
117:'Melodic Tom', |
|
118:'Synth Drum', |
|
119:'Reverse Cymbal', |
|
120:'Guitar Fret Noise', |
|
121:'Breath Noise', |
|
122:'Seashore', |
|
123:'Bird Tweet', |
|
124:'Telephone Ring', |
|
125:'Helicopter', |
|
126:'Applause', |
|
127:'Gunshot', |
|
} |
|
Notenum2percussion = { |
|
35:'Acoustic Bass Drum', |
|
36:'Bass Drum 1', |
|
37:'Side Stick', |
|
38:'Acoustic Snare', |
|
39:'Hand Clap', |
|
40:'Electric Snare', |
|
41:'Low Floor Tom', |
|
42:'Closed Hi-Hat', |
|
43:'High Floor Tom', |
|
44:'Pedal Hi-Hat', |
|
45:'Low Tom', |
|
46:'Open Hi-Hat', |
|
47:'Low-Mid Tom', |
|
48:'Hi-Mid Tom', |
|
49:'Crash Cymbal 1', |
|
50:'High Tom', |
|
51:'Ride Cymbal 1', |
|
52:'Chinese Cymbal', |
|
53:'Ride Bell', |
|
54:'Tambourine', |
|
55:'Splash Cymbal', |
|
56:'Cowbell', |
|
57:'Crash Cymbal 2', |
|
58:'Vibraslap', |
|
59:'Ride Cymbal 2', |
|
60:'Hi Bongo', |
|
61:'Low Bongo', |
|
62:'Mute Hi Conga', |
|
63:'Open Hi Conga', |
|
64:'Low Conga', |
|
65:'High Timbale', |
|
66:'Low Timbale', |
|
67:'High Agogo', |
|
68:'Low Agogo', |
|
69:'Cabasa', |
|
70:'Maracas', |
|
71:'Short Whistle', |
|
72:'Long Whistle', |
|
73:'Short Guiro', |
|
74:'Long Guiro', |
|
75:'Claves', |
|
76:'Hi Wood Block', |
|
77:'Low Wood Block', |
|
78:'Mute Cuica', |
|
79:'Open Cuica', |
|
80:'Mute Triangle', |
|
81:'Open Triangle', |
|
} |
|
|
|
Event2channelindex = { 'note':3, 'note_off':2, 'note_on':2, |
|
'key_after_touch':2, 'control_change':2, 'patch_change':2, |
|
'channel_after_touch':2, 'pitch_wheel_change':2 |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def _twobytes2int(byte_a): |
|
r'''decode a 16 bit quantity from two bytes,''' |
|
return (byte_a[1] | (byte_a[0] << 8)) |
|
|
|
def _int2twobytes(int_16bit): |
|
r'''encode a 16 bit quantity into two bytes,''' |
|
return bytes([(int_16bit>>8) & 0xFF, int_16bit & 0xFF]) |
|
|
|
def _read_14_bit(byte_a): |
|
r'''decode a 14 bit quantity from two bytes,''' |
|
return (byte_a[0] | (byte_a[1] << 7)) |
|
|
|
def _write_14_bit(int_14bit): |
|
r'''encode a 14 bit quantity into two bytes,''' |
|
return bytes([int_14bit & 0x7F, (int_14bit>>7) & 0x7F]) |
|
|
|
def _ber_compressed_int(integer): |
|
r'''BER compressed integer (not an ASN.1 BER, see perlpacktut for |
|
details). Its bytes represent an unsigned integer in base 128, |
|
most significant digit first, with as few digits as possible. |
|
Bit eight (the high bit) is set on each byte except the last. |
|
''' |
|
ber = bytearray(b'') |
|
seven_bits = 0x7F & integer |
|
ber.insert(0, seven_bits) |
|
integer >>= 7 |
|
while integer > 0: |
|
seven_bits = 0x7F & integer |
|
ber.insert(0, 0x80|seven_bits) |
|
integer >>= 7 |
|
return ber |
|
|
|
def _unshift_ber_int(ba): |
|
r'''Given a bytearray, returns a tuple of (the ber-integer at the |
|
start, and the remainder of the bytearray). |
|
''' |
|
if not len(ba): |
|
_warn('_unshift_ber_int: no integer found') |
|
return ((0, b"")) |
|
byte = ba.pop(0) |
|
integer = 0 |
|
while True: |
|
integer += (byte & 0x7F) |
|
if not (byte & 0x80): |
|
return ((integer, ba)) |
|
if not len(ba): |
|
_warn('_unshift_ber_int: no end-of-integer found') |
|
return ((0, ba)) |
|
byte = ba.pop(0) |
|
integer <<= 7 |
|
|
|
def _clean_up_warnings(): |
|
|
|
|
|
|
|
global _previous_times |
|
global _previous_warning |
|
if _previous_times > 1: |
|
|
|
|
|
|
|
sys.stderr.write(' previous message repeated {0} times\n'.format(_previous_times)) |
|
elif _previous_times > 0: |
|
sys.stderr.write(' previous message repeated\n') |
|
_previous_times = 0 |
|
_previous_warning = '' |
|
|
|
def _warn(s=''): |
|
global _previous_times |
|
global _previous_warning |
|
if s == _previous_warning: |
|
_previous_times = _previous_times + 1 |
|
else: |
|
_clean_up_warnings() |
|
sys.stderr.write(str(s)+"\n") |
|
_previous_warning = s |
|
|
|
def _some_text_event(which_kind=0x01, text=b'some_text', text_encoding='ISO-8859-1'): |
|
if str(type(text)).find("'str'") >= 0: |
|
data = bytes(text, encoding=text_encoding) |
|
else: |
|
data = bytes(text) |
|
return b'\xFF'+bytes((which_kind,))+_ber_compressed_int(len(data))+data |
|
|
|
def _consistentise_ticks(scores): |
|
|
|
if len(scores) == 1: |
|
return copy.deepcopy(scores) |
|
are_consistent = True |
|
ticks = scores[0][0] |
|
iscore = 1 |
|
while iscore < len(scores): |
|
if scores[iscore][0] != ticks: |
|
are_consistent = False |
|
break |
|
iscore += 1 |
|
if are_consistent: |
|
return copy.deepcopy(scores) |
|
new_scores = [] |
|
iscore = 0 |
|
while iscore < len(scores): |
|
score = scores[iscore] |
|
new_scores.append(opus2score(to_millisecs(score2opus(score)))) |
|
iscore += 1 |
|
return new_scores |
|
|
|
|
|
|
|
|
|
def _decode(trackdata=b'', exclude=None, include=None, |
|
event_callback=None, exclusive_event_callback=None, no_eot_magic=False): |
|
r'''Decodes MIDI track data into an opus-style list of events. |
|
The options: |
|
'exclude' is a list of event types which will be ignored SHOULD BE A SET |
|
'include' (and no exclude), makes exclude a list |
|
of all possible events, /minus/ what include specifies |
|
'event_callback' is a coderef |
|
'exclusive_event_callback' is a coderef |
|
''' |
|
trackdata = bytearray(trackdata) |
|
if exclude == None: |
|
exclude = [] |
|
if include == None: |
|
include = [] |
|
if include and not exclude: |
|
exclude = All_events |
|
include = set(include) |
|
exclude = set(exclude) |
|
|
|
|
|
event_code = -1; |
|
event_count = 0; |
|
events = [] |
|
|
|
while(len(trackdata)): |
|
|
|
eot = False |
|
event_count += 1 |
|
|
|
E = [] |
|
|
|
|
|
|
|
[time, remainder] = _unshift_ber_int(trackdata) |
|
|
|
|
|
first_byte = trackdata.pop(0) & 0xFF |
|
|
|
if (first_byte < 0xF0): |
|
if (first_byte & 0x80): |
|
event_code = first_byte |
|
else: |
|
|
|
trackdata.insert(0, first_byte) |
|
if (event_code == -1): |
|
_warn("Running status not set; Aborting track.") |
|
return [] |
|
|
|
command = event_code & 0xF0 |
|
channel = event_code & 0x0F |
|
|
|
if (command == 0xF6): |
|
pass |
|
elif (command == 0xC0 or command == 0xD0): |
|
parameter = trackdata.pop(0) |
|
else: |
|
parameter = (trackdata.pop(0), trackdata.pop(0)) |
|
|
|
|
|
|
|
|
|
if (command == 0x80): |
|
if 'note_off' in exclude: |
|
continue |
|
E = ['note_off', time, channel, parameter[0], parameter[1]] |
|
elif (command == 0x90): |
|
if 'note_on' in exclude: |
|
continue |
|
E = ['note_on', time, channel, parameter[0], parameter[1]] |
|
elif (command == 0xA0): |
|
if 'key_after_touch' in exclude: |
|
continue |
|
E = ['key_after_touch',time,channel,parameter[0],parameter[1]] |
|
elif (command == 0xB0): |
|
if 'control_change' in exclude: |
|
continue |
|
E = ['control_change',time,channel,parameter[0],parameter[1]] |
|
elif (command == 0xC0): |
|
if 'patch_change' in exclude: |
|
continue |
|
E = ['patch_change', time, channel, parameter] |
|
elif (command == 0xD0): |
|
if 'channel_after_touch' in exclude: |
|
continue |
|
E = ['channel_after_touch', time, channel, parameter] |
|
elif (command == 0xE0): |
|
if 'pitch_wheel_change' in exclude: |
|
continue |
|
E = ['pitch_wheel_change', time, channel, |
|
_read_14_bit(parameter)-0x2000] |
|
else: |
|
_warn("Shouldn't get here; command="+hex(command)) |
|
|
|
elif (first_byte == 0xFF): |
|
|
|
|
|
|
|
|
|
command = trackdata.pop(0) & 0xFF |
|
[length, trackdata] = _unshift_ber_int(trackdata) |
|
if (command == 0x00): |
|
if (length == 2): |
|
E = ['set_sequence_number',time,_twobytes2int(trackdata)] |
|
else: |
|
_warn('set_sequence_number: length must be 2, not '+str(length)) |
|
E = ['set_sequence_number', time, 0] |
|
|
|
elif command >= 0x01 and command <= 0x0f: |
|
|
|
|
|
|
|
|
|
text_data = bytes(trackdata[0:length]) |
|
|
|
if (command == 0x01): |
|
E = ['text_event', time, text_data] |
|
elif (command == 0x02): |
|
E = ['copyright_text_event', time, text_data] |
|
elif (command == 0x03): |
|
E = ['track_name', time, text_data] |
|
elif (command == 0x04): |
|
E = ['instrument_name', time, text_data] |
|
elif (command == 0x05): |
|
E = ['lyric', time, text_data] |
|
elif (command == 0x06): |
|
E = ['marker', time, text_data] |
|
elif (command == 0x07): |
|
E = ['cue_point', time, text_data] |
|
|
|
elif (command == 0x08): |
|
E = ['text_event_08', time, text_data] |
|
elif (command == 0x09): |
|
E = ['text_event_09', time, text_data] |
|
elif (command == 0x0a): |
|
E = ['text_event_0a', time, text_data] |
|
elif (command == 0x0b): |
|
E = ['text_event_0b', time, text_data] |
|
elif (command == 0x0c): |
|
E = ['text_event_0c', time, text_data] |
|
elif (command == 0x0d): |
|
E = ['text_event_0d', time, text_data] |
|
elif (command == 0x0e): |
|
E = ['text_event_0e', time, text_data] |
|
elif (command == 0x0f): |
|
E = ['text_event_0f', time, text_data] |
|
|
|
|
|
elif (command == 0x2F): |
|
E = ['end_track', time] |
|
|
|
|
|
elif (command == 0x51): |
|
if length != 3: |
|
_warn('set_tempo event, but length='+str(length)) |
|
E = ['set_tempo', time, |
|
struct.unpack(">I", b'\x00'+trackdata[0:3])[0]] |
|
elif (command == 0x54): |
|
if length != 5: |
|
_warn('smpte_offset event, but length='+str(length)) |
|
E = ['smpte_offset',time] + list(struct.unpack(">BBBBB",trackdata[0:5])) |
|
elif (command == 0x58): |
|
if length != 4: |
|
_warn('time_signature event, but length='+str(length)) |
|
E = ['time_signature', time]+list(trackdata[0:4]) |
|
elif (command == 0x59): |
|
if length != 2: |
|
_warn('key_signature event, but length='+str(length)) |
|
E = ['key_signature',time] + list(struct.unpack(">bB",trackdata[0:2])) |
|
elif (command == 0x7F): |
|
E = ['sequencer_specific',time, bytes(trackdata[0:length])] |
|
else: |
|
E = ['raw_meta_event', time, command, |
|
bytes(trackdata[0:length])] |
|
|
|
|
|
|
|
|
|
|
|
trackdata = trackdata[length:] |
|
|
|
|
|
elif (first_byte == 0xF0 or first_byte == 0xF7): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[length, trackdata] = _unshift_ber_int(trackdata) |
|
if first_byte == 0xF0: |
|
|
|
|
|
E = ['sysex_f0', time, bytes(trackdata[0:length])] |
|
else: |
|
E = ['sysex_f7', time, bytes(trackdata[0:length])] |
|
trackdata = trackdata[length:] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif (first_byte == 0xF2): |
|
|
|
E = ['song_position', time, _read_14_bit(trackdata[:2])] |
|
trackdata = trackdata[2:] |
|
|
|
elif (first_byte == 0xF3): |
|
|
|
E = ['song_select', time, trackdata[0]] |
|
trackdata = trackdata[1:] |
|
|
|
|
|
elif (first_byte == 0xF6): |
|
E = ['tune_request', time] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r''' |
|
elif (first_byte > 0xF0) { # Some unknown kinda F-series event #### |
|
# Here we only produce a one-byte piece of raw data. |
|
# But the encoder for 'raw_data' accepts any length of it. |
|
E = [ 'raw_data', |
|
time, substr(trackdata,Pointer,1) ] |
|
# DTime and the Data (in this case, the one Event-byte) |
|
++Pointer; # itself |
|
|
|
''' |
|
elif first_byte > 0xF0: |
|
|
|
|
|
E = ['raw_data', time, trackdata[0]] |
|
trackdata = trackdata[1:] |
|
else: |
|
_warn("Aborting track. Command-byte first_byte="+hex(first_byte)) |
|
break |
|
|
|
|
|
|
|
|
|
|
|
if E and (E[0] == 'end_track'): |
|
|
|
eot = True |
|
if not no_eot_magic: |
|
if E[1] > 0: |
|
E = ['text_event', E[1], ''] |
|
else: |
|
E = [] |
|
|
|
if E and not (E[0] in exclude): |
|
|
|
|
|
|
|
|
|
events.append(E) |
|
if eot: |
|
break |
|
|
|
|
|
|
|
return events |
|
|
|
|
|
|
|
def _encode(events_lol, unknown_callback=None, never_add_eot=False, |
|
no_eot_magic=False, no_running_status=False, text_encoding='ISO-8859-1'): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = [] |
|
|
|
|
|
events = copy.deepcopy(events_lol) |
|
|
|
if not never_add_eot: |
|
|
|
if events: |
|
last = events[-1] |
|
if not (last[0] == 'end_track'): |
|
if (last[0] == 'text_event' and len(last[2]) == 0): |
|
|
|
if no_eot_magic: |
|
|
|
|
|
events.append(['end_track', 0]) |
|
else: |
|
|
|
last[0] = 'end_track' |
|
else: |
|
|
|
events.append(['end_track', 0]) |
|
else: |
|
events = [['end_track', 0],] |
|
|
|
|
|
last_status = -1 |
|
|
|
for event_r in (events): |
|
E = copy.deepcopy(event_r) |
|
|
|
if not E: |
|
continue |
|
|
|
event = E.pop(0) |
|
if not len(event): |
|
continue |
|
|
|
dtime = int(E.pop(0)) |
|
|
|
|
|
event_data = '' |
|
|
|
if ( |
|
event == 'note_on' |
|
or event == 'note_off' |
|
or event == 'control_change' |
|
or event == 'key_after_touch' |
|
or event == 'patch_change' |
|
or event == 'channel_after_touch' |
|
or event == 'pitch_wheel_change' ): |
|
|
|
|
|
if (event == 'note_off'): |
|
status = 0x80 | (int(E[0]) & 0x0F) |
|
parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F) |
|
elif (event == 'note_on'): |
|
status = 0x90 | (int(E[0]) & 0x0F) |
|
parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F) |
|
elif (event == 'key_after_touch'): |
|
status = 0xA0 | (int(E[0]) & 0x0F) |
|
parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F) |
|
elif (event == 'control_change'): |
|
status = 0xB0 | (int(E[0]) & 0x0F) |
|
parameters = struct.pack('>BB', int(E[1])&0xFF, int(E[2])&0xFF) |
|
elif (event == 'patch_change'): |
|
status = 0xC0 | (int(E[0]) & 0x0F) |
|
parameters = struct.pack('>B', int(E[1]) & 0xFF) |
|
elif (event == 'channel_after_touch'): |
|
status = 0xD0 | (int(E[0]) & 0x0F) |
|
parameters = struct.pack('>B', int(E[1]) & 0xFF) |
|
elif (event == 'pitch_wheel_change'): |
|
status = 0xE0 | (int(E[0]) & 0x0F) |
|
parameters = _write_14_bit(int(E[1]) + 0x2000) |
|
else: |
|
_warn("BADASS FREAKOUT ERROR 31415!") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data.append(_ber_compressed_int(dtime)) |
|
if (status != last_status) or no_running_status: |
|
data.append(struct.pack('>B', status)) |
|
data.append(parameters) |
|
|
|
last_status = status |
|
continue |
|
else: |
|
|
|
|
|
|
|
|
|
last_status = -1 |
|
|
|
if event == 'raw_meta_event': |
|
event_data = _some_text_event(int(E[0]), E[1], text_encoding) |
|
elif (event == 'set_sequence_number'): |
|
event_data = b'\xFF\x00\x02'+_int2twobytes(E[0]) |
|
|
|
|
|
|
|
elif (event == 'text_event'): |
|
event_data = _some_text_event(0x01, E[0], text_encoding) |
|
elif (event == 'copyright_text_event'): |
|
event_data = _some_text_event(0x02, E[0], text_encoding) |
|
elif (event == 'track_name'): |
|
event_data = _some_text_event(0x03, E[0], text_encoding) |
|
elif (event == 'instrument_name'): |
|
event_data = _some_text_event(0x04, E[0], text_encoding) |
|
elif (event == 'lyric'): |
|
event_data = _some_text_event(0x05, E[0], text_encoding) |
|
elif (event == 'marker'): |
|
event_data = _some_text_event(0x06, E[0], text_encoding) |
|
elif (event == 'cue_point'): |
|
event_data = _some_text_event(0x07, E[0], text_encoding) |
|
elif (event == 'text_event_08'): |
|
event_data = _some_text_event(0x08, E[0], text_encoding) |
|
elif (event == 'text_event_09'): |
|
event_data = _some_text_event(0x09, E[0], text_encoding) |
|
elif (event == 'text_event_0a'): |
|
event_data = _some_text_event(0x0A, E[0], text_encoding) |
|
elif (event == 'text_event_0b'): |
|
event_data = _some_text_event(0x0B, E[0], text_encoding) |
|
elif (event == 'text_event_0c'): |
|
event_data = _some_text_event(0x0C, E[0], text_encoding) |
|
elif (event == 'text_event_0d'): |
|
event_data = _some_text_event(0x0D, E[0], text_encoding) |
|
elif (event == 'text_event_0e'): |
|
event_data = _some_text_event(0x0E, E[0], text_encoding) |
|
elif (event == 'text_event_0f'): |
|
event_data = _some_text_event(0x0F, E[0], text_encoding) |
|
|
|
|
|
elif (event == 'end_track'): |
|
event_data = b"\xFF\x2F\x00" |
|
|
|
elif (event == 'set_tempo'): |
|
|
|
|
|
event_data = b'\xFF\x51\x03'+struct.pack('>I',E[0])[1:] |
|
elif (event == 'smpte_offset'): |
|
|
|
event_data = struct.pack(">BBBbBBBB", 0xFF,0x54,0x05,E[0],E[1],E[2],E[3],E[4]) |
|
elif (event == 'time_signature'): |
|
|
|
event_data = struct.pack(">BBBbBBB", 0xFF, 0x58, 0x04, E[0],E[1],E[2],E[3]) |
|
elif (event == 'key_signature'): |
|
event_data = struct.pack(">BBBbB", 0xFF, 0x59, 0x02, E[0],E[1]) |
|
elif (event == 'sequencer_specific'): |
|
|
|
event_data = _some_text_event(0x7F, E[0], text_encoding) |
|
|
|
|
|
|
|
elif (event == 'sysex_f0'): |
|
|
|
|
|
event_data = bytearray(b'\xF0')+_ber_compressed_int(len(E[0]))+bytearray(E[0]) |
|
elif (event == 'sysex_f7'): |
|
|
|
event_data = bytearray(b'\xF7')+_ber_compressed_int(len(E[0]))+bytearray(E[0]) |
|
|
|
elif (event == 'song_position'): |
|
event_data = b"\xF2" + _write_14_bit( E[0] ) |
|
elif (event == 'song_select'): |
|
event_data = struct.pack('>BB', 0xF3, E[0] ) |
|
elif (event == 'tune_request'): |
|
event_data = b"\xF6" |
|
elif (event == 'raw_data'): |
|
_warn("_encode: raw_data event not supported") |
|
|
|
continue |
|
|
|
|
|
else: |
|
|
|
if unknown_callback: |
|
|
|
pass |
|
else: |
|
_warn("Unknown event: "+str(event)) |
|
|
|
|
|
continue |
|
|
|
|
|
if str(type(event_data)).find("'str'") >= 0: |
|
event_data = bytearray(event_data.encode('Latin1', 'ignore')) |
|
if len(event_data): |
|
|
|
|
|
data.append(_ber_compressed_int(dtime)+event_data) |
|
|
|
return b''.join(data) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datetime |
|
|
|
import copy |
|
|
|
from datetime import datetime |
|
|
|
import secrets |
|
|
|
import random |
|
|
|
import pickle |
|
|
|
import csv |
|
|
|
import tqdm |
|
|
|
from itertools import zip_longest |
|
from itertools import groupby |
|
from collections import Counter |
|
|
|
from operator import itemgetter |
|
|
|
import sys |
|
|
|
from abc import ABC, abstractmethod |
|
|
|
from difflib import SequenceMatcher as SM |
|
|
|
import statistics |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def Tegridy_TXT_to_INT_Converter(input_TXT_string, line_by_line_INT_string=True, max_INT = 0): |
|
|
|
'''Tegridy TXT to Intergers Converter |
|
|
|
Input: Input TXT string in the TMIDI-TXT format |
|
|
|
Type of output TXT INT string: line-by-line or one long string |
|
|
|
Maximum absolute integer to process. Maximum is inclusive |
|
Default = process all integers. This helps to remove outliers/unwanted ints |
|
|
|
Output: List of pure intergers |
|
String of intergers in the specified format: line-by-line or one long string |
|
Number of processed integers |
|
Number of skipped integers |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
print('Tegridy TXT to Intergers Converter') |
|
|
|
output_INT_list = [] |
|
|
|
npi = 0 |
|
nsi = 0 |
|
|
|
TXT_List = list(input_TXT_string) |
|
for char in TXT_List: |
|
if max_INT != 0: |
|
if abs(ord(char)) <= max_INT: |
|
output_INT_list.append(ord(char)) |
|
npi += 1 |
|
else: |
|
nsi += 1 |
|
else: |
|
output_INT_list.append(ord(char)) |
|
npi += 1 |
|
|
|
if line_by_line_INT_string: |
|
output_INT_string = '\n'.join([str(elem) for elem in output_INT_list]) |
|
else: |
|
output_INT_string = ' '.join([str(elem) for elem in output_INT_list]) |
|
|
|
print('Converted TXT to INTs:', npi, ' / ', nsi) |
|
|
|
return output_INT_list, output_INT_string, npi, nsi |
|
|
|
|
|
|
|
def Tegridy_INT_to_TXT_Converter(input_INT_list): |
|
|
|
'''Tegridy Intergers to TXT Converter |
|
|
|
Input: List of intergers in TMIDI-TXT-INT format |
|
Output: Decoded TXT string in TMIDI-TXT format |
|
Project Los Angeles |
|
Tegridy Code 2020''' |
|
|
|
output_TXT_string = '' |
|
|
|
for i in input_INT_list: |
|
output_TXT_string += chr(int(i)) |
|
|
|
return output_TXT_string |
|
|
|
|
|
|
|
def Tegridy_INT_String_to_TXT_Converter(input_INT_String, line_by_line_input=True): |
|
|
|
'''Tegridy Intergers String to TXT Converter |
|
|
|
Input: List of intergers in TMIDI-TXT-INT-String format |
|
Output: Decoded TXT string in TMIDI-TXT format |
|
Project Los Angeles |
|
Tegridy Code 2020''' |
|
|
|
print('Tegridy Intergers String to TXT Converter') |
|
|
|
if line_by_line_input: |
|
input_string = input_INT_String.split('\n') |
|
else: |
|
input_string = input_INT_String.split(' ') |
|
|
|
output_TXT_string = '' |
|
|
|
for i in input_string: |
|
try: |
|
output_TXT_string += chr(abs(int(i))) |
|
except: |
|
print('Bad note:', i) |
|
continue |
|
|
|
print('Done!') |
|
|
|
return output_TXT_string |
|
|
|
|
|
|
|
def Tegridy_SONG_to_MIDI_Converter(SONG, |
|
output_signature = 'Tegridy TMIDI Module', |
|
track_name = 'Composition Track', |
|
number_of_ticks_per_quarter = 425, |
|
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 0, 0, 0, 0, 0, 0], |
|
output_file_name = 'TMIDI-Composition', |
|
text_encoding='ISO-8859-1', |
|
verbose=True): |
|
|
|
'''Tegridy SONG to MIDI Converter |
|
|
|
Input: Input SONG in TMIDI SONG/MIDI.py Score format |
|
Output MIDI Track 0 name / MIDI Signature |
|
Output MIDI Track 1 name / Composition track name |
|
Number of ticks per quarter for the output MIDI |
|
List of 16 MIDI patch numbers for output MIDI. Def. is MuseNet compatible patches. |
|
Output file name w/o .mid extension. |
|
Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs. |
|
|
|
Output: MIDI File |
|
Detailed MIDI stats |
|
|
|
Project Los Angeles |
|
Tegridy Code 2020''' |
|
|
|
if verbose: |
|
print('Converting to MIDI. Please stand-by...') |
|
|
|
output_header = [number_of_ticks_per_quarter, |
|
[['track_name', 0, bytes(output_signature, text_encoding)]]] |
|
|
|
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], |
|
['patch_change', 0, 1, list_of_MIDI_patches[1]], |
|
['patch_change', 0, 2, list_of_MIDI_patches[2]], |
|
['patch_change', 0, 3, list_of_MIDI_patches[3]], |
|
['patch_change', 0, 4, list_of_MIDI_patches[4]], |
|
['patch_change', 0, 5, list_of_MIDI_patches[5]], |
|
['patch_change', 0, 6, list_of_MIDI_patches[6]], |
|
['patch_change', 0, 7, list_of_MIDI_patches[7]], |
|
['patch_change', 0, 8, list_of_MIDI_patches[8]], |
|
['patch_change', 0, 9, list_of_MIDI_patches[9]], |
|
['patch_change', 0, 10, list_of_MIDI_patches[10]], |
|
['patch_change', 0, 11, list_of_MIDI_patches[11]], |
|
['patch_change', 0, 12, list_of_MIDI_patches[12]], |
|
['patch_change', 0, 13, list_of_MIDI_patches[13]], |
|
['patch_change', 0, 14, list_of_MIDI_patches[14]], |
|
['patch_change', 0, 15, list_of_MIDI_patches[15]], |
|
['track_name', 0, bytes(track_name, text_encoding)]] |
|
|
|
output = output_header + [patch_list + SONG] |
|
|
|
midi_data = score2midi(output, text_encoding) |
|
detailed_MIDI_stats = score2stats(output) |
|
|
|
with open(output_file_name + '.mid', 'wb') as midi_file: |
|
midi_file.write(midi_data) |
|
midi_file.close() |
|
|
|
if verbose: |
|
print('Done! Enjoy! :)') |
|
|
|
return detailed_MIDI_stats |
|
|
|
|
|
|
|
def Tegridy_ms_SONG_to_MIDI_Converter(ms_SONG, |
|
output_signature = 'Tegridy TMIDI Module', |
|
track_name = 'Composition Track', |
|
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 0, 0, 0, 0, 0, 0], |
|
output_file_name = 'TMIDI-Composition', |
|
text_encoding='ISO-8859-1', |
|
timings_multiplier=1, |
|
verbose=True |
|
): |
|
|
|
'''Tegridy milisecond SONG to MIDI Converter |
|
|
|
Input: Input ms SONG in TMIDI ms SONG/MIDI.py ms Score format |
|
Output MIDI Track 0 name / MIDI Signature |
|
Output MIDI Track 1 name / Composition track name |
|
List of 16 MIDI patch numbers for output MIDI. Def. is MuseNet compatible patches. |
|
Output file name w/o .mid extension. |
|
Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs. |
|
Optional timings multiplier |
|
Optional verbose output |
|
|
|
Output: MIDI File |
|
Detailed MIDI stats |
|
|
|
Project Los Angeles |
|
Tegridy Code 2024''' |
|
|
|
if verbose: |
|
print('Converting to MIDI. Please stand-by...') |
|
|
|
output_header = [1000, |
|
[['set_tempo', 0, 1000000], |
|
['time_signature', 0, 4, 2, 24, 8], |
|
['track_name', 0, bytes(output_signature, text_encoding)]]] |
|
|
|
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], |
|
['patch_change', 0, 1, list_of_MIDI_patches[1]], |
|
['patch_change', 0, 2, list_of_MIDI_patches[2]], |
|
['patch_change', 0, 3, list_of_MIDI_patches[3]], |
|
['patch_change', 0, 4, list_of_MIDI_patches[4]], |
|
['patch_change', 0, 5, list_of_MIDI_patches[5]], |
|
['patch_change', 0, 6, list_of_MIDI_patches[6]], |
|
['patch_change', 0, 7, list_of_MIDI_patches[7]], |
|
['patch_change', 0, 8, list_of_MIDI_patches[8]], |
|
['patch_change', 0, 9, list_of_MIDI_patches[9]], |
|
['patch_change', 0, 10, list_of_MIDI_patches[10]], |
|
['patch_change', 0, 11, list_of_MIDI_patches[11]], |
|
['patch_change', 0, 12, list_of_MIDI_patches[12]], |
|
['patch_change', 0, 13, list_of_MIDI_patches[13]], |
|
['patch_change', 0, 14, list_of_MIDI_patches[14]], |
|
['patch_change', 0, 15, list_of_MIDI_patches[15]], |
|
['track_name', 0, bytes(track_name, text_encoding)]] |
|
|
|
SONG = copy.deepcopy(ms_SONG) |
|
|
|
if timings_multiplier != 1: |
|
for S in SONG: |
|
S[1] = S[1] * timings_multiplier |
|
if S[0] == 'note': |
|
S[2] = S[2] * timings_multiplier |
|
|
|
output = output_header + [patch_list + SONG] |
|
|
|
midi_data = score2midi(output, text_encoding) |
|
detailed_MIDI_stats = score2stats(output) |
|
|
|
with open(output_file_name + '.mid', 'wb') as midi_file: |
|
midi_file.write(midi_data) |
|
midi_file.close() |
|
|
|
if verbose: |
|
print('Done! Enjoy! :)') |
|
|
|
return detailed_MIDI_stats |
|
|
|
|
|
|
|
def hsv_to_rgb(h, s, v): |
|
if s == 0.0: |
|
return v, v, v |
|
i = int(h*6.0) |
|
f = (h*6.0) - i |
|
p = v*(1.0 - s) |
|
q = v*(1.0 - s*f) |
|
t = v*(1.0 - s*(1.0-f)) |
|
i = i%6 |
|
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i] |
|
|
|
def generate_colors(n): |
|
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)] |
|
|
|
def add_arrays(a, b): |
|
return [sum(pair) for pair in zip(a, b)] |
|
|
|
|
|
|
|
def plot_ms_SONG(ms_song, |
|
preview_length_in_notes=0, |
|
block_lines_times_list = None, |
|
plot_title='ms Song', |
|
max_num_colors=129, |
|
drums_color_num=128, |
|
plot_size=(11,4), |
|
note_height = 0.75, |
|
show_grid_lines=False, |
|
return_plt = False |
|
): |
|
|
|
'''Tegridy ms SONG plotter/vizualizer''' |
|
|
|
notes = [s for s in ms_song if s[0] == 'note'] |
|
|
|
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7): |
|
print('The song notes do not have patches information') |
|
print('Ploease add patches to the notes in the song') |
|
|
|
else: |
|
|
|
start_times = [s[1] / 1000 for s in notes] |
|
durations = [s[2] / 1000 for s in notes] |
|
pitches = [s[4] for s in notes] |
|
patches = [s[6] for s in notes] |
|
|
|
colors = generate_colors(max_num_colors) |
|
colors[drums_color_num] = (1, 1, 1) |
|
|
|
pbl = notes[preview_length_in_notes][1] / 1000 |
|
|
|
fig, ax = plt.subplots(figsize=plot_size) |
|
|
|
|
|
|
|
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches): |
|
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch]) |
|
ax.add_patch(rect) |
|
|
|
|
|
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))]) |
|
ax.set_ylim([min(pitches)-1, max(pitches)+1]) |
|
|
|
|
|
ax.set_facecolor('black') |
|
fig.patch.set_facecolor('white') |
|
|
|
if preview_length_in_notes > 0: |
|
ax.axvline(x=pbl, c='white') |
|
|
|
if block_lines_times_list: |
|
for bl in block_lines_times_list: |
|
ax.axvline(x=bl, c='white') |
|
|
|
if show_grid_lines: |
|
ax.grid(color='white') |
|
|
|
plt.xlabel('Time (s)', c='black') |
|
plt.ylabel('MIDI Pitch', c='black') |
|
|
|
plt.title(plot_title) |
|
|
|
if return_plt: |
|
return plt |
|
|
|
plt.show() |
|
|
|
|
|
|
|
def Tegridy_SONG_to_Full_MIDI_Converter(SONG, |
|
output_signature = 'Tegridy TMIDI Module', |
|
track_name = 'Composition Track', |
|
number_of_ticks_per_quarter = 1000, |
|
output_file_name = 'TMIDI-Composition', |
|
text_encoding='ISO-8859-1', |
|
verbose=True): |
|
|
|
'''Tegridy SONG to Full MIDI Converter |
|
|
|
Input: Input SONG in Full TMIDI SONG/MIDI.py Score format |
|
Output MIDI Track 0 name / MIDI Signature |
|
Output MIDI Track 1 name / Composition track name |
|
Number of ticks per quarter for the output MIDI |
|
Output file name w/o .mid extension. |
|
Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs. |
|
|
|
Output: MIDI File |
|
Detailed MIDI stats |
|
|
|
Project Los Angeles |
|
Tegridy Code 2023''' |
|
|
|
if verbose: |
|
print('Converting to MIDI. Please stand-by...') |
|
|
|
output_header = [number_of_ticks_per_quarter, |
|
[['set_tempo', 0, 1000000], |
|
['track_name', 0, bytes(output_signature, text_encoding)]]] |
|
|
|
song_track = [['track_name', 0, bytes(track_name, text_encoding)]] |
|
|
|
output = output_header + [song_track + SONG] |
|
|
|
midi_data = score2midi(output, text_encoding) |
|
detailed_MIDI_stats = score2stats(output) |
|
|
|
with open(output_file_name + '.mid', 'wb') as midi_file: |
|
midi_file.write(midi_data) |
|
midi_file.close() |
|
|
|
if verbose: |
|
print('Done! Enjoy! :)') |
|
|
|
return detailed_MIDI_stats |
|
|
|
|
|
|
|
def Tegridy_File_Time_Stamp(input_file_name='File_Created_on_', ext = ''): |
|
|
|
'''Tegridy File Time Stamp |
|
|
|
Input: Full path and file name without extention |
|
File extension |
|
|
|
Output: File name string with time-stamp and extension (time-stamped file name) |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
print('Time-stamping output file...') |
|
|
|
now = '' |
|
now_n = str(datetime.now()) |
|
now_n = now_n.replace(' ', '_') |
|
now_n = now_n.replace(':', '_') |
|
now = now_n.replace('.', '_') |
|
|
|
fname = input_file_name + str(now) + ext |
|
|
|
return(fname) |
|
|
|
|
|
|
|
def Tegridy_Any_Pickle_File_Writer(Data, input_file_name='TMIDI_Pickle_File'): |
|
|
|
'''Tegridy Pickle File Writer |
|
|
|
Input: Data to write (I.e. a list) |
|
Full path and file name without extention |
|
|
|
Output: Named Pickle file |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
print('Tegridy Pickle File Writer') |
|
|
|
full_path_to_output_dataset_to = input_file_name + '.pickle' |
|
|
|
if os.path.exists(full_path_to_output_dataset_to): |
|
os.remove(full_path_to_output_dataset_to) |
|
print('Removing old Dataset...') |
|
else: |
|
print("Creating new Dataset file...") |
|
|
|
with open(full_path_to_output_dataset_to, 'wb') as filehandle: |
|
|
|
pickle.dump(Data, filehandle, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
print('Dataset was saved as:', full_path_to_output_dataset_to) |
|
print('Task complete. Enjoy! :)') |
|
|
|
|
|
|
|
def Tegridy_Any_Pickle_File_Reader(input_file_name='TMIDI_Pickle_File', ext='.pickle'): |
|
|
|
'''Tegridy Pickle File Loader |
|
|
|
Input: Full path and file name without extention |
|
File extension if different from default .pickle |
|
|
|
Output: Standard Python 3 unpickled data object |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
print('Tegridy Pickle File Loader') |
|
print('Loading the pickle file. Please wait...') |
|
|
|
with open(input_file_name + ext, 'rb') as pickle_file: |
|
content = pickle.load(pickle_file) |
|
|
|
return content |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def Optimus_MIDI_TXT_Processor(MIDI_file, |
|
line_by_line_output=True, |
|
chordify_TXT=False, |
|
dataset_MIDI_events_time_denominator=1, |
|
output_velocity=True, |
|
output_MIDI_channels = False, |
|
MIDI_channel=0, |
|
MIDI_patch=[0, 1], |
|
char_offset = 30000, |
|
transpose_by = 0, |
|
flip=False, |
|
melody_conditioned_encoding=False, |
|
melody_pitch_baseline = 0, |
|
number_of_notes_to_sample = -1, |
|
sampling_offset_from_start = 0, |
|
karaoke=False, |
|
karaoke_language_encoding='utf-8', |
|
song_name='Song', |
|
perfect_timings=False, |
|
musenet_encoding=False, |
|
transform=0, |
|
zero_token=False, |
|
reset_timings=False): |
|
|
|
'''Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
|
|
|
|
debug = False |
|
|
|
ev = 0 |
|
|
|
chords_list_final = [] |
|
chords_list = [] |
|
events_matrix = [] |
|
melody = [] |
|
melody1 = [] |
|
|
|
itrack = 1 |
|
|
|
min_note = 0 |
|
max_note = 0 |
|
ev = 0 |
|
patch = 0 |
|
|
|
score = [] |
|
rec_event = [] |
|
|
|
txt = '' |
|
txtc = '' |
|
chords = [] |
|
melody_chords = [] |
|
|
|
karaoke_events_matrix = [] |
|
karaokez = [] |
|
|
|
sample = 0 |
|
start_sample = 0 |
|
|
|
bass_melody = [] |
|
|
|
INTS = [] |
|
bints = 0 |
|
|
|
|
|
|
|
def list_average(num): |
|
sum_num = 0 |
|
for t in num: |
|
sum_num = sum_num + t |
|
|
|
avg = sum_num / len(num) |
|
return avg |
|
|
|
|
|
|
|
|
|
midi_file = open(MIDI_file, 'rb') |
|
if debug: print('Processing File:', file_address) |
|
|
|
try: |
|
opus = midi2opus(midi_file.read()) |
|
|
|
except: |
|
print('Problematic MIDI. Skipping...') |
|
print('File name:', MIDI_file) |
|
midi_file.close() |
|
return txt, melody, chords |
|
|
|
midi_file.close() |
|
|
|
score1 = to_millisecs(opus) |
|
score2 = opus2score(score1) |
|
|
|
|
|
|
|
if MIDI_channel == 16: |
|
score = score2 |
|
|
|
if MIDI_channel >= 0 and MIDI_channel <= 15: |
|
score = grep(score2, [MIDI_channel]) |
|
|
|
if MIDI_channel == -1: |
|
score = grep(score2, [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15]) |
|
|
|
|
|
while itrack < len(score): |
|
for event in score[itrack]: |
|
|
|
if perfect_timings: |
|
if event[0] == 'note': |
|
event[1] = round(event[1], -1) |
|
event[2] = round(event[2], -1) |
|
|
|
if event[0] == 'text_event' or event[0] == 'lyric' or event[0] == 'note': |
|
if perfect_timings: |
|
event[1] = round(event[1], -1) |
|
karaokez.append(event) |
|
|
|
if event[0] == 'text_event' or event[0] == 'lyric': |
|
if perfect_timings: |
|
event[1] = round(event[1], -1) |
|
try: |
|
event[2] = str(event[2].decode(karaoke_language_encoding, 'replace')).replace('/', '').replace(' ', '').replace('\\', '') |
|
except: |
|
event[2] = str(event[2]).replace('/', '').replace(' ', '').replace('\\', '') |
|
continue |
|
karaoke_events_matrix.append(event) |
|
|
|
if event[0] == 'patch_change': |
|
patch = event[3] |
|
|
|
if event[0] == 'note' and patch in MIDI_patch: |
|
if len(event) == 6: |
|
eve = copy.deepcopy(event) |
|
|
|
eve[1] = int(event[1] / dataset_MIDI_events_time_denominator) |
|
eve[2] = int(event[2] / dataset_MIDI_events_time_denominator) |
|
|
|
eve[4] = int(event[4] + transpose_by) |
|
|
|
if flip == True: |
|
eve[4] = int(127 - (event[4] + transpose_by)) |
|
|
|
if number_of_notes_to_sample > -1: |
|
if sample <= number_of_notes_to_sample: |
|
if start_sample >= sampling_offset_from_start: |
|
events_matrix.append(eve) |
|
sample += 1 |
|
ev += 1 |
|
else: |
|
start_sample += 1 |
|
|
|
else: |
|
events_matrix.append(eve) |
|
ev += 1 |
|
start_sample += 1 |
|
|
|
itrack +=1 |
|
|
|
|
|
|
|
fn = os.path.basename(MIDI_file) |
|
song_name = song_name.replace(' ', '_').replace('=', '_').replace('\'', '-') |
|
if song_name == 'Song': |
|
sng_name = fn.split('.')[0].replace(' ', '_').replace('=', '_').replace('\'', '-') |
|
song_name = sng_name |
|
|
|
|
|
if zero_token: |
|
txt += chr(char_offset) + chr(char_offset) |
|
if output_MIDI_channels: |
|
txt += chr(char_offset) |
|
if output_velocity: |
|
txt += chr(char_offset) + chr(char_offset) |
|
else: |
|
txt += chr(char_offset) |
|
|
|
txtc += chr(char_offset) + chr(char_offset) |
|
if output_MIDI_channels: |
|
txtc += chr(char_offset) |
|
if output_velocity: |
|
txtc += chr(char_offset) + chr(char_offset) |
|
else: |
|
txtc += chr(char_offset) |
|
|
|
txt += '=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes' |
|
txtc += '=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes' |
|
|
|
else: |
|
|
|
txt += 'SONG=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes' |
|
txtc += 'SONG=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes' |
|
|
|
if line_by_line_output: |
|
txt += chr(10) |
|
txtc += chr(10) |
|
else: |
|
txt += chr(32) |
|
txtc += chr(32) |
|
|
|
|
|
events_matrix.sort(key=lambda x: x[1]) |
|
|
|
|
|
if reset_timings: |
|
ev_matrix = Tegridy_Timings_Converter(events_matrix)[0] |
|
else: |
|
ev_matrix = events_matrix |
|
|
|
chords.extend(ev_matrix) |
|
|
|
|
|
|
|
melody_list = [] |
|
|
|
|
|
values = set(map(lambda x:x[1], ev_matrix)) |
|
|
|
groups = [[y for y in ev_matrix if y[1]==x and len(y) == 6] for x in values] |
|
|
|
|
|
for items in groups: |
|
|
|
items.sort(reverse=True, key=lambda x: x[4]) |
|
|
|
if melody_conditioned_encoding: items[0][3] = 0 |
|
|
|
melody_list.append(items[0]) |
|
melody_chords.append(items) |
|
bass_melody.append(items[-1]) |
|
|
|
|
|
if melody_conditioned_encoding == True: |
|
if not karaoke: |
|
|
|
previous_event = copy.deepcopy(melody_chords[0][0]) |
|
|
|
for ev in melody_chords: |
|
hp = True |
|
ev.sort(reverse=False, key=lambda x: x[4]) |
|
for event in ev: |
|
|
|
|
|
start_time = int(abs(event[1] - previous_event[1])) |
|
|
|
duration = int(previous_event[2]) |
|
|
|
if hp == True: |
|
if int(previous_event[4]) >= melody_pitch_baseline: |
|
channel = int(0) |
|
hp = False |
|
else: |
|
channel = int(previous_event[3]+1) |
|
hp = False |
|
else: |
|
channel = int(previous_event[3]+1) |
|
hp = False |
|
|
|
pitch = int(previous_event[4]) |
|
|
|
velocity = int(previous_event[5]) |
|
|
|
|
|
try: |
|
INTS.append([(start_time)+char_offset, (duration)+char_offset, channel+char_offset, pitch+char_offset, velocity+char_offset]) |
|
except: |
|
bints += 1 |
|
|
|
|
|
try: |
|
txtc += str(chr(start_time + char_offset)) |
|
txtc += str(chr(duration + char_offset)) |
|
txtc += str(chr(pitch + char_offset)) |
|
if output_velocity: |
|
txtc += str(chr(velocity + char_offset)) |
|
if output_MIDI_channels: |
|
txtc += str(chr(channel + char_offset)) |
|
|
|
if line_by_line_output: |
|
|
|
|
|
txtc += chr(10) |
|
else: |
|
|
|
txtc += chr(32) |
|
|
|
previous_event = copy.deepcopy(event) |
|
|
|
except: |
|
|
|
continue |
|
|
|
if not line_by_line_output: |
|
txtc += chr(10) |
|
|
|
txt = txtc |
|
chords = melody_chords |
|
|
|
|
|
else: |
|
if not karaoke: |
|
melody_chords.sort(reverse=False, key=lambda x: x[0][1]) |
|
mel_chords = [] |
|
for mc in melody_chords: |
|
mel_chords.extend(mc) |
|
|
|
if transform != 0: |
|
chords = Tegridy_Transform(mel_chords, transform) |
|
else: |
|
chords = mel_chords |
|
|
|
|
|
previous_event = copy.deepcopy(chords[0]) |
|
for event in chords: |
|
|
|
|
|
start_time = int(abs(event[1] - previous_event[1])) |
|
|
|
duration = int(previous_event[2]) |
|
|
|
channel = int(previous_event[3]) |
|
|
|
pitch = int(previous_event[4] + transpose_by) |
|
if flip == True: |
|
pitch = 127 - int(previous_event[4] + transpose_by) |
|
|
|
velocity = int(previous_event[5]) |
|
|
|
|
|
try: |
|
INTS.append([(start_time)+char_offset, (duration)+char_offset, channel+char_offset, pitch+char_offset, velocity+char_offset]) |
|
except: |
|
bints += 1 |
|
|
|
|
|
try: |
|
txt += str(chr(start_time + char_offset)) |
|
txt += str(chr(duration + char_offset)) |
|
txt += str(chr(pitch + char_offset)) |
|
if output_velocity: |
|
txt += str(chr(velocity + char_offset)) |
|
if output_MIDI_channels: |
|
txt += str(chr(channel + char_offset)) |
|
|
|
|
|
if chordify_TXT == True and int(event[1] - previous_event[1]) == 0: |
|
txt += '' |
|
else: |
|
if line_by_line_output: |
|
txt += chr(10) |
|
else: |
|
txt += chr(32) |
|
|
|
previous_event = copy.deepcopy(event) |
|
|
|
except: |
|
|
|
continue |
|
|
|
if not line_by_line_output: |
|
txt += chr(10) |
|
|
|
|
|
if karaoke: |
|
|
|
melody_chords.sort(reverse=False, key=lambda x: x[0][1]) |
|
mel_chords = [] |
|
for mc in melody_chords: |
|
mel_chords.extend(mc) |
|
|
|
if transform != 0: |
|
chords = Tegridy_Transform(mel_chords, transform) |
|
else: |
|
chords = mel_chords |
|
|
|
previous_event = copy.deepcopy(chords[0]) |
|
for event in chords: |
|
|
|
|
|
start_time = int(abs(event[1] - previous_event[1])) |
|
|
|
duration = int(previous_event[2]) |
|
|
|
channel = int(previous_event[3]) |
|
|
|
pitch = int(previous_event[4] + transpose_by) |
|
|
|
velocity = int(previous_event[5]) |
|
|
|
|
|
txt += str(chr(start_time + char_offset)) |
|
txt += str(chr(duration + char_offset)) |
|
txt += str(chr(pitch + char_offset)) |
|
|
|
txt += str(chr(velocity + char_offset)) |
|
txt += str(chr(channel + char_offset)) |
|
|
|
if start_time > 0: |
|
for k in karaoke_events_matrix: |
|
if event[1] == k[1]: |
|
txt += str('=') |
|
txt += str(k[2]) |
|
break |
|
|
|
if line_by_line_output: |
|
txt += chr(10) |
|
else: |
|
txt += chr(32) |
|
|
|
previous_event = copy.deepcopy(event) |
|
|
|
if not line_by_line_output: |
|
txt += chr(10) |
|
|
|
|
|
|
|
|
|
|
|
karaokez.sort(reverse=False, key=lambda x: x[1]) |
|
|
|
|
|
if musenet_encoding and not melody_conditioned_encoding and not karaoke: |
|
chords.sort(key=lambda x: (x[1], x[3])) |
|
|
|
|
|
melody_list.sort() |
|
|
|
|
|
aux1 = [None] |
|
aux2 = [None] |
|
|
|
return txt, melody_list, chords, bass_melody, karaokez, INTS, aux1, aux2 |
|
|
|
|
|
|
|
def Optimus_TXT_to_Notes_Converter(Optimus_TXT_String, |
|
line_by_line_dataset = True, |
|
has_velocities = True, |
|
has_MIDI_channels = True, |
|
dataset_MIDI_events_time_denominator = 1, |
|
char_encoding_offset = 30000, |
|
save_only_first_composition = True, |
|
simulate_velocity=True, |
|
karaoke=False, |
|
zero_token=False): |
|
|
|
'''Project Los Angeles |
|
Tegridy Code 2020''' |
|
|
|
print('Tegridy Optimus TXT to Notes Converter') |
|
print('Converting TXT to Notes list...Please wait...') |
|
|
|
song_name = '' |
|
|
|
if line_by_line_dataset: |
|
input_string = Optimus_TXT_String.split('\n') |
|
else: |
|
input_string = Optimus_TXT_String.split(' ') |
|
|
|
if line_by_line_dataset: |
|
name_string = Optimus_TXT_String.split('\n')[0].split('=') |
|
else: |
|
name_string = Optimus_TXT_String.split(' ')[0].split('=') |
|
|
|
|
|
zt = '' |
|
|
|
zt += chr(char_encoding_offset) + chr(char_encoding_offset) |
|
|
|
if has_MIDI_channels: |
|
zt += chr(char_encoding_offset) |
|
|
|
if has_velocities: |
|
zt += chr(char_encoding_offset) + chr(char_encoding_offset) |
|
|
|
else: |
|
zt += chr(char_encoding_offset) |
|
|
|
if zero_token: |
|
if name_string[0] == zt: |
|
song_name = name_string[1] |
|
|
|
else: |
|
if name_string[0] == 'SONG': |
|
song_name = name_string[1] |
|
|
|
output_list = [] |
|
st = 0 |
|
|
|
for i in range(2, len(input_string)-1): |
|
|
|
if save_only_first_composition: |
|
if zero_token: |
|
if input_string[i].split('=')[0] == zt: |
|
|
|
song_name = name_string[1] |
|
break |
|
|
|
else: |
|
if input_string[i].split('=')[0] == 'SONG': |
|
|
|
song_name = name_string[1] |
|
break |
|
try: |
|
istring = input_string[i] |
|
|
|
if has_MIDI_channels == False: |
|
step = 4 |
|
|
|
if has_MIDI_channels == True: |
|
step = 5 |
|
|
|
if has_velocities == False: |
|
step -= 1 |
|
|
|
st += int(ord(istring[0]) - char_encoding_offset) * dataset_MIDI_events_time_denominator |
|
|
|
if not karaoke: |
|
for s in range(0, len(istring), step): |
|
if has_MIDI_channels==True: |
|
if step > 3 and len(istring) > 2: |
|
out = [] |
|
out.append('note') |
|
|
|
out.append(st) |
|
|
|
out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) |
|
|
|
if has_velocities: |
|
out.append(int(ord(istring[s+4]) - char_encoding_offset)) |
|
else: |
|
out.append(int(ord(istring[s+3]) - char_encoding_offset)) |
|
|
|
out.append(int(ord(istring[s+2]) - char_encoding_offset)) |
|
|
|
if simulate_velocity: |
|
if s == 0: |
|
sim_vel = int(ord(istring[s+2]) - char_encoding_offset) |
|
out.append(sim_vel) |
|
else: |
|
out.append(int(ord(istring[s+3]) - char_encoding_offset)) |
|
|
|
if has_MIDI_channels==False: |
|
if step > 3 and len(istring) > 2: |
|
out = [] |
|
out.append('note') |
|
|
|
out.append(st) |
|
out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) |
|
out.append(0) |
|
out.append(int(ord(istring[s+2]) - char_encoding_offset)) |
|
|
|
if simulate_velocity: |
|
if s == 0: |
|
sim_vel = int(ord(istring[s+2]) - char_encoding_offset) |
|
out.append(sim_vel) |
|
else: |
|
out.append(int(ord(istring[s+3]) - char_encoding_offset)) |
|
|
|
if step == 3 and len(istring) > 2: |
|
out = [] |
|
out.append('note') |
|
|
|
out.append(st) |
|
out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) |
|
out.append(0) |
|
out.append(int(ord(istring[s+2]) - char_encoding_offset)) |
|
|
|
out.append(int(ord(istring[s+2]) - char_encoding_offset)) |
|
|
|
output_list.append(out) |
|
|
|
if karaoke: |
|
try: |
|
out = [] |
|
out.append('note') |
|
|
|
out.append(st) |
|
out.append(int(ord(istring[1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) |
|
out.append(int(ord(istring[4]) - char_encoding_offset)) |
|
out.append(int(ord(istring[2]) - char_encoding_offset)) |
|
|
|
if simulate_velocity: |
|
if s == 0: |
|
sim_vel = int(ord(istring[2]) - char_encoding_offset) |
|
out.append(sim_vel) |
|
else: |
|
out.append(int(ord(istring[3]) - char_encoding_offset)) |
|
output_list.append(out) |
|
out = [] |
|
if istring.split('=')[1] != '': |
|
out.append('lyric') |
|
out.append(st) |
|
out.append(istring.split('=')[1]) |
|
output_list.append(out) |
|
except: |
|
continue |
|
|
|
|
|
except: |
|
print('Bad note string:', istring) |
|
continue |
|
|
|
|
|
S = [] |
|
for x in output_list: |
|
if len(x) == 6 or len(x) == 3: |
|
S.append(x) |
|
|
|
output_list.clear() |
|
output_list = copy.deepcopy(S) |
|
|
|
|
|
print('Task complete! Enjoy! :)') |
|
|
|
return output_list, song_name |
|
|
|
|
|
|
|
def Optimus_Data2TXT_Converter(data, |
|
dataset_time_denominator=1, |
|
transpose_by = 0, |
|
char_offset = 33, |
|
line_by_line_output = True, |
|
output_velocity = False, |
|
output_MIDI_channels = False): |
|
|
|
|
|
'''Input: data as a flat chords list of flat chords lists |
|
|
|
Output: TXT string |
|
INTs |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
txt = '' |
|
TXT = '' |
|
|
|
quit = False |
|
counter = 0 |
|
|
|
INTs = [] |
|
INTs_f = [] |
|
|
|
for d in tqdm.tqdm(sorted(data)): |
|
|
|
if quit == True: |
|
break |
|
|
|
txt = 'SONG=' + str(counter) |
|
counter += 1 |
|
|
|
if line_by_line_output: |
|
txt += chr(10) |
|
else: |
|
txt += chr(32) |
|
|
|
INTs = [] |
|
|
|
|
|
previous_event = copy.deepcopy(d[0]) |
|
for event in sorted(d): |
|
|
|
|
|
start_time = int(abs(event[1] - previous_event[1]) / dataset_time_denominator) |
|
|
|
duration = int(previous_event[2] / dataset_time_denominator) |
|
|
|
channel = int(previous_event[3]) |
|
|
|
pitch = int(previous_event[4] + transpose_by) |
|
|
|
velocity = int(previous_event[5]) |
|
|
|
INTs.append([start_time, duration, pitch]) |
|
|
|
|
|
try: |
|
txt += str(chr(start_time + char_offset)) |
|
txt += str(chr(duration + char_offset)) |
|
txt += str(chr(pitch + char_offset)) |
|
if output_velocity: |
|
txt += str(chr(velocity + char_offset)) |
|
if output_MIDI_channels: |
|
txt += str(chr(channel + char_offset)) |
|
|
|
if line_by_line_output: |
|
txt += chr(10) |
|
else: |
|
txt += chr(32) |
|
|
|
previous_event = copy.deepcopy(event) |
|
except KeyboardInterrupt: |
|
quit = True |
|
break |
|
except: |
|
print('Problematic MIDI data. Skipping...') |
|
continue |
|
|
|
if not line_by_line_output: |
|
txt += chr(10) |
|
|
|
TXT += txt |
|
INTs_f.extend(INTs) |
|
|
|
return TXT, INTs_f |
|
|
|
|
|
|
|
def Optimus_Squash(chords_list, simulate_velocity=True, mono_compression=False): |
|
|
|
'''Input: Flat chords list |
|
Simulate velocity or not |
|
Mono-compression enabled or disabled |
|
|
|
Default is almost lossless 25% compression, otherwise, lossy 50% compression (mono-compression) |
|
|
|
Output: Squashed chords list |
|
Resulting compression level |
|
|
|
Please note that if drums are passed through as is |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
output = [] |
|
ptime = 0 |
|
vel = 0 |
|
boost = 15 |
|
stptc = [] |
|
ocount = 0 |
|
rcount = 0 |
|
|
|
for c in chords_list: |
|
|
|
cc = copy.deepcopy(c) |
|
ocount += 1 |
|
|
|
if [cc[1], cc[3], (cc[4] % 12) + 60] not in stptc: |
|
stptc.append([cc[1], cc[3], (cc[4] % 12) + 60]) |
|
|
|
if cc[3] != 9: |
|
cc[4] = (c[4] % 12) + 60 |
|
|
|
if simulate_velocity and c[1] != ptime: |
|
vel = c[4] + boost |
|
|
|
if cc[3] != 9: |
|
cc[5] = vel |
|
|
|
if mono_compression: |
|
if c[1] != ptime: |
|
output.append(cc) |
|
rcount += 1 |
|
else: |
|
output.append(cc) |
|
rcount += 1 |
|
|
|
ptime = c[1] |
|
|
|
output.sort(key=lambda x: (x[1], x[4])) |
|
|
|
comp_level = 100 - int((rcount * 100) / ocount) |
|
|
|
return output, comp_level |
|
|
|
|
|
|
|
def Optimus_Signature(chords_list, calculate_full_signature=False): |
|
|
|
'''Optimus Signature |
|
|
|
---In the name of the search for a perfect score slice signature--- |
|
|
|
Input: Flat chords list to evaluate |
|
|
|
Output: Full Optimus Signature as a list |
|
Best/recommended Optimus Signature as a list |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
|
|
|
|
|
|
if calculate_full_signature: |
|
psd = statistics.stdev([int(y[4]) for y in chords_list]) |
|
else: |
|
psd = 0 |
|
|
|
|
|
pmh = statistics.median_high([int(y[4]) for y in chords_list]) |
|
pm = statistics.median([int(y[4]) for y in chords_list]) |
|
pml = statistics.median_low([int(y[4]) for y in chords_list]) |
|
|
|
|
|
if calculate_full_signature: |
|
phm = statistics.harmonic_mean([int(y[4]) for y in chords_list]) |
|
else: |
|
phm = 0 |
|
|
|
|
|
dur = statistics.median([int(y[2]) for y in chords_list]) |
|
|
|
|
|
|
|
vel = statistics.median([int(y[5]) for y in chords_list]) |
|
|
|
|
|
mtds = statistics.median([int(abs(chords_list[i-1][1]-chords_list[i][1])) for i in range(1, len(chords_list))]) |
|
if calculate_full_signature: |
|
hmtds = statistics.harmonic_mean([int(abs(chords_list[i-1][1]-chords_list[i][1])) for i in range(1, len(chords_list))]) |
|
else: |
|
hmtds = 0 |
|
|
|
|
|
full_Optimus_signature = [round(psd), round(pmh), round(pm), round(pml), round(phm), round(dur), round(vel), round(mtds), round(hmtds)] |
|
|
|
|
|
best_Optimus_signature = [round(pmh), round(pm), round(pml), round(dur, -1), round(vel, -1), round(mtds, -1)] |
|
|
|
|
|
|
|
return full_Optimus_signature, best_Optimus_signature |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def Tegridy_FastSearch(needle, haystack, randomize = False): |
|
|
|
''' |
|
|
|
Input: Needle iterable |
|
Haystack iterable |
|
Randomize search range (this prevents determinism) |
|
|
|
Output: Start index of the needle iterable in a haystack iterable |
|
If nothing found, -1 is returned |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
need = copy.deepcopy(needle) |
|
|
|
try: |
|
if randomize: |
|
idx = haystack.index(need, secrets.randbelow(len(haystack)-len(need))) |
|
else: |
|
idx = haystack.index(need) |
|
|
|
except KeyboardInterrupt: |
|
return -1 |
|
|
|
except: |
|
return -1 |
|
|
|
return idx |
|
|
|
|
|
|
|
def Tegridy_Chord_Match(chord1, chord2, match_type=2): |
|
|
|
'''Tegridy Chord Match |
|
|
|
Input: Two chords to evaluate |
|
Match type: 2 = duration, channel, pitch, velocity |
|
3 = channel, pitch, velocity |
|
4 = pitch, velocity |
|
5 = velocity |
|
|
|
Output: Match rating (0-100) |
|
NOTE: Match rating == -1 means identical source chords |
|
NOTE: Match rating == 100 means mutual shortest chord |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
match_rating = 0 |
|
|
|
if chord1 == []: |
|
return 0 |
|
if chord2 == []: |
|
return 0 |
|
|
|
if chord1 == chord2: |
|
return -1 |
|
|
|
else: |
|
zipped_pairs = list(zip(chord1, chord2)) |
|
zipped_diff = abs(len(chord1) - len(chord2)) |
|
|
|
short_match = [False] |
|
for pair in zipped_pairs: |
|
cho1 = ' '.join([str(y) for y in pair[0][match_type:]]) |
|
cho2 = ' '.join([str(y) for y in pair[1][match_type:]]) |
|
if cho1 == cho2: |
|
short_match.append(True) |
|
else: |
|
short_match.append(False) |
|
|
|
if True in short_match: |
|
return 100 |
|
|
|
pairs_ratings = [] |
|
|
|
for pair in zipped_pairs: |
|
cho1 = ' '.join([str(y) for y in pair[0][match_type:]]) |
|
cho2 = ' '.join([str(y) for y in pair[1][match_type:]]) |
|
pairs_ratings.append(SM(None, cho1, cho2).ratio()) |
|
|
|
match_rating = sum(pairs_ratings) / len(pairs_ratings) * 100 |
|
|
|
return match_rating |
|
|
|
|
|
|
|
def Tegridy_Last_Chord_Finder(chords_list): |
|
|
|
'''Tegridy Last Chord Finder |
|
|
|
Input: Flat chords list |
|
|
|
Output: Last detected chord of the chords list |
|
Last chord start index in the original chords list |
|
First chord end index in the original chords list |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
chords = [] |
|
cho = [] |
|
|
|
ptime = 0 |
|
|
|
i = 0 |
|
|
|
pc_idx = 0 |
|
fc_idx = 0 |
|
|
|
chords_list.sort(reverse=False, key=lambda x: x[1]) |
|
|
|
for cc in chords_list: |
|
|
|
if cc[1] == ptime: |
|
|
|
cho.append(cc) |
|
|
|
ptime = cc[1] |
|
|
|
else: |
|
if pc_idx == 0: |
|
fc_idx = chords_list.index(cc) |
|
pc_idx = chords_list.index(cc) |
|
|
|
chords.append(cho) |
|
|
|
cho = [] |
|
|
|
cho.append(cc) |
|
|
|
ptime = cc[1] |
|
|
|
i += 1 |
|
|
|
if cho != []: |
|
chords.append(cho) |
|
i += 1 |
|
|
|
return chords_list[pc_idx:], pc_idx, fc_idx |
|
|
|
|
|
|
|
def Tegridy_Chords_Generator(chords_list, shuffle_pairs = True, remove_single_notes=False): |
|
|
|
'''Tegridy Score Chords Pairs Generator |
|
|
|
Input: Flat chords list |
|
Shuffle pairs (recommended) |
|
|
|
Output: List of chords |
|
|
|
Average time(ms) per chord |
|
Average time(ms) per pitch |
|
Average chords delta time |
|
|
|
Average duration |
|
Average channel |
|
Average pitch |
|
Average velocity |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
chords = [] |
|
cho = [] |
|
|
|
i = 0 |
|
|
|
|
|
chords_list.sort(reverse=False, key=lambda x: x[1]) |
|
|
|
|
|
pcho = chords_list[0] |
|
for cc in chords_list: |
|
if cc[1] == pcho[1]: |
|
|
|
cho.append(cc) |
|
pcho = copy.deepcopy(cc) |
|
|
|
else: |
|
if not remove_single_notes: |
|
chords.append(cho) |
|
cho = [] |
|
cho.append(cc) |
|
pcho = copy.deepcopy(cc) |
|
|
|
i += 1 |
|
else: |
|
if len(cho) > 1: |
|
chords.append(cho) |
|
cho = [] |
|
cho.append(cc) |
|
pcho = copy.deepcopy(cc) |
|
|
|
i += 1 |
|
|
|
|
|
t0 = chords[0][0][1] |
|
t1 = chords[-1][-1][1] |
|
tdel = abs(t1 - t0) |
|
avg_ms_per_chord = int(tdel / i) |
|
avg_ms_per_pitch = int(tdel / len(chords_list)) |
|
|
|
|
|
tds = [int(abs(chords_list[i-1][1]-chords_list[i][1]) / 1) for i in range(1, len(chords_list))] |
|
if len(tds) != 0: avg_delta_time = int(sum(tds) / len(tds)) |
|
|
|
|
|
p = int(sum([int(y[4]) for y in chords_list]) / len(chords_list)) |
|
d = int(sum([int(y[2]) for y in chords_list]) / len(chords_list)) |
|
c = int(sum([int(y[3]) for y in chords_list]) / len(chords_list)) |
|
v = int(sum([int(y[5]) for y in chords_list]) / len(chords_list)) |
|
|
|
|
|
if shuffle_pairs: |
|
random.shuffle(chords) |
|
|
|
return chords, [avg_ms_per_chord, avg_ms_per_pitch, avg_delta_time], [d, c, p, v] |
|
|
|
|
|
|
|
def Tegridy_Chords_List_Music_Features(chords_list, st_dur_div = 1, pitch_div = 1, vel_div = 1): |
|
|
|
'''Tegridy Chords List Music Features |
|
|
|
Input: Flat chords list |
|
|
|
Output: A list of the extracted chords list's music features |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
chords_list1 = [x for x in chords_list if x] |
|
chords_list1.sort(reverse=False, key=lambda x: x[1]) |
|
|
|
|
|
|
|
melody_list = [] |
|
bass_melody = [] |
|
melody_chords = [] |
|
mel_avg_tds = [] |
|
mel_chrd_avg_tds = [] |
|
bass_melody_avg_tds = [] |
|
|
|
|
|
values = set(map(lambda x:x[1], chords_list1)) |
|
|
|
groups = [[y for y in chords_list1 if y[1]==x and len(y) == 6] for x in values] |
|
|
|
|
|
for items in groups: |
|
items.sort(reverse=True, key=lambda x: x[4]) |
|
melody_list.append(items[0]) |
|
melody_chords.append(items) |
|
bass_melody.append(items[-1]) |
|
|
|
|
|
melody_list.sort(reverse=False, key=lambda x: x[1]) |
|
melody_chords.sort(reverse=False, key=lambda x: x[0][1]) |
|
bass_melody.sort(reverse=False, key=lambda x: x[1]) |
|
|
|
|
|
|
|
|
|
mel_avg_pitch = int(sum([y[4] for y in melody_list]) / len(melody_list) / pitch_div) |
|
mel_avg_dur = int(sum([int(y[2] / st_dur_div) for y in melody_list]) / len(melody_list)) |
|
mel_avg_vel = int(sum([int(y[5] / vel_div) for y in melody_list]) / len(melody_list)) |
|
mel_avg_chan = int(sum([int(y[3]) for y in melody_list]) / len(melody_list)) |
|
|
|
mel_tds = [int(abs(melody_list[i-1][1]-melody_list[i][1])) for i in range(1, len(melody_list))] |
|
if len(mel_tds) != 0: mel_avg_tds = int(sum(mel_tds) / len(mel_tds) / st_dur_div) |
|
|
|
melody_features = [mel_avg_tds, mel_avg_dur, mel_avg_chan, mel_avg_pitch, mel_avg_vel] |
|
|
|
|
|
mel_chrd_avg_pitch = int(sum([y[4] for y in chords_list1]) / len(chords_list1) / pitch_div) |
|
mel_chrd_avg_dur = int(sum([int(y[2] / st_dur_div) for y in chords_list1]) / len(chords_list1)) |
|
mel_chrd_avg_vel = int(sum([int(y[5] / vel_div) for y in chords_list1]) / len(chords_list1)) |
|
mel_chrd_avg_chan = int(sum([int(y[3]) for y in chords_list1]) / len(chords_list1)) |
|
|
|
mel_chrd_tds = [int(abs(chords_list1[i-1][1]-chords_list1[i][1])) for i in range(1, len(chords_list1))] |
|
if len(mel_tds) != 0: mel_chrd_avg_tds = int(sum(mel_chrd_tds) / len(mel_chrd_tds) / st_dur_div) |
|
|
|
chords_list_features = [mel_chrd_avg_tds, mel_chrd_avg_dur, mel_chrd_avg_chan, mel_chrd_avg_pitch, mel_chrd_avg_vel] |
|
|
|
|
|
bass_melody_avg_pitch = int(sum([y[4] for y in bass_melody]) / len(bass_melody) / pitch_div) |
|
bass_melody_avg_dur = int(sum([int(y[2] / st_dur_div) for y in bass_melody]) / len(bass_melody)) |
|
bass_melody_avg_vel = int(sum([int(y[5] / vel_div) for y in bass_melody]) / len(bass_melody)) |
|
bass_melody_avg_chan = int(sum([int(y[3]) for y in bass_melody]) / len(bass_melody)) |
|
|
|
bass_melody_tds = [int(abs(bass_melody[i-1][1]-bass_melody[i][1])) for i in range(1, len(bass_melody))] |
|
if len(bass_melody_tds) != 0: bass_melody_avg_tds = int(sum(bass_melody_tds) / len(bass_melody_tds) / st_dur_div) |
|
|
|
bass_melody_features = [bass_melody_avg_tds, bass_melody_avg_dur, bass_melody_avg_chan, bass_melody_avg_pitch, bass_melody_avg_vel] |
|
|
|
|
|
music_features = [] |
|
|
|
music_features.extend([len(chords_list1)]) |
|
|
|
music_features.extend(melody_features) |
|
music_features.extend(chords_list_features) |
|
music_features.extend(bass_melody_features) |
|
music_features.extend([sum([y[4] for y in chords_list1])]) |
|
|
|
return music_features |
|
|
|
|
|
|
|
def Tegridy_Transform(chords_list, to_pitch=60, to_velocity=-1): |
|
|
|
'''Tegridy Transform |
|
|
|
Input: Flat chords list |
|
Desired average pitch (-1 == no change) |
|
Desired average velocity (-1 == no change) |
|
|
|
Output: Transformed flat chords list |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
transformed_chords_list = [] |
|
|
|
chords_list.sort(reverse=False, key=lambda x: x[1]) |
|
|
|
chords_list_features = Optimus_Signature(chords_list)[1] |
|
|
|
pitch_diff = int((chords_list_features[0] + chords_list_features[1] + chords_list_features[2]) / 3) - to_pitch |
|
velocity_diff = chords_list_features[4] - to_velocity |
|
|
|
for c in chords_list: |
|
cc = copy.deepcopy(c) |
|
if c[3] != 9: |
|
if to_pitch != -1: |
|
cc[4] = c[4] - pitch_diff |
|
|
|
if to_velocity != -1: |
|
cc[5] = c[5] - velocity_diff |
|
|
|
transformed_chords_list.append(cc) |
|
|
|
return transformed_chords_list |
|
|
|
|
|
|
|
def Tegridy_MIDI_Zip_Notes_Summarizer(chords_list, match_type = 4): |
|
|
|
'''Tegridy MIDI Zip Notes Summarizer |
|
|
|
Input: Flat chords list / SONG |
|
Match type according to 'note' event of MIDI.py |
|
|
|
Output: Summarized chords list |
|
Number of summarized notes |
|
Number of dicarted notes |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
i = 0 |
|
j = 0 |
|
out1 = [] |
|
pout = [] |
|
|
|
|
|
for o in chords_list: |
|
|
|
|
|
|
|
if o[match_type:] not in pout: |
|
pout.append(o[match_type:]) |
|
|
|
out1.append(o) |
|
j += 1 |
|
|
|
else: |
|
i += 1 |
|
|
|
return out1, i |
|
|
|
|
|
|
|
def Tegridy_Score_Chords_Pairs_Generator(chords_list, shuffle_pairs = True, remove_single_notes=False): |
|
|
|
'''Tegridy Score Chords Pairs Generator |
|
|
|
Input: Flat chords list |
|
Shuffle pairs (recommended) |
|
|
|
Output: Score chords pairs list |
|
Number of created pairs |
|
Number of detected chords |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
chords = [] |
|
cho = [] |
|
|
|
i = 0 |
|
j = 0 |
|
|
|
chords_list.sort(reverse=False, key=lambda x: x[1]) |
|
pcho = chords_list[0] |
|
for cc in chords_list: |
|
if cc[1] == pcho[1]: |
|
|
|
cho.append(cc) |
|
pcho = copy.deepcopy(cc) |
|
|
|
else: |
|
if not remove_single_notes: |
|
chords.append(cho) |
|
cho = [] |
|
cho.append(cc) |
|
pcho = copy.deepcopy(cc) |
|
|
|
i += 1 |
|
else: |
|
if len(cho) > 1: |
|
chords.append(cho) |
|
cho = [] |
|
cho.append(cc) |
|
pcho = copy.deepcopy(cc) |
|
|
|
i += 1 |
|
|
|
chords_pairs = [] |
|
for i in range(len(chords)-1): |
|
chords_pairs.append([chords[i], chords[i+1]]) |
|
j += 1 |
|
if shuffle_pairs: random.shuffle(chords_pairs) |
|
|
|
return chords_pairs, j, i |
|
|
|
|
|
|
|
def Tegridy_Sliced_Score_Pairs_Generator(chords_list, number_of_miliseconds_per_slice=2000, shuffle_pairs = False): |
|
|
|
'''Tegridy Sliced Score Pairs Generator |
|
|
|
Input: Flat chords list |
|
Number of miliseconds per slice |
|
|
|
Output: Sliced score pairs list |
|
Number of created slices |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
chords = [] |
|
cho = [] |
|
|
|
time = number_of_miliseconds_per_slice |
|
|
|
i = 0 |
|
|
|
chords_list1 = [x for x in chords_list if x] |
|
chords_list1.sort(reverse=False, key=lambda x: x[1]) |
|
pcho = chords_list1[0] |
|
for cc in chords_list1[1:]: |
|
|
|
if cc[1] <= time: |
|
|
|
cho.append(cc) |
|
|
|
else: |
|
if cho != [] and pcho != []: chords.append([pcho, cho]) |
|
pcho = copy.deepcopy(cho) |
|
cho = [] |
|
cho.append(cc) |
|
time += number_of_miliseconds_per_slice |
|
i += 1 |
|
|
|
if cho != [] and pcho != []: |
|
chords.append([pcho, cho]) |
|
pcho = copy.deepcopy(cho) |
|
i += 1 |
|
|
|
if shuffle_pairs: random.shuffle(chords) |
|
|
|
return chords, i |
|
|
|
|
|
|
|
def Tegridy_Timings_Converter(chords_list, |
|
max_delta_time = 1000, |
|
fixed_start_time = 250, |
|
start_time = 0, |
|
start_time_multiplier = 1, |
|
durations_multiplier = 1): |
|
|
|
'''Tegridy Timings Converter |
|
|
|
Input: Flat chords list |
|
Max delta time allowed between notes |
|
Fixed start note time for excessive gaps |
|
|
|
Output: Converted flat chords list |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
song = chords_list |
|
|
|
song1 = [] |
|
|
|
p = song[0] |
|
|
|
p[1] = start_time |
|
|
|
time = start_time |
|
|
|
delta = [0] |
|
|
|
for i in range(len(song)): |
|
if song[i][0] == 'note': |
|
ss = copy.deepcopy(song[i]) |
|
if song[i][1] != p[1]: |
|
|
|
if abs(song[i][1] - p[1]) > max_delta_time: |
|
time += fixed_start_time |
|
else: |
|
time += abs(song[i][1] - p[1]) |
|
delta.append(abs(song[i][1] - p[1])) |
|
|
|
ss[1] = int(round(time * start_time_multiplier, -1)) |
|
ss[2] = int(round(song[i][2] * durations_multiplier, -1)) |
|
song1.append(ss) |
|
|
|
p = copy.deepcopy(song[i]) |
|
else: |
|
|
|
ss[1] = int(round(time * start_time_multiplier, -1)) |
|
ss[2] = int(round(song[i][2] * durations_multiplier, -1)) |
|
song1.append(ss) |
|
|
|
p = copy.deepcopy(song[i]) |
|
|
|
else: |
|
ss = copy.deepcopy(song[i]) |
|
ss[1] = time |
|
song1.append(ss) |
|
|
|
average_delta_st = int(sum(delta) / len(delta)) |
|
average_duration = int(sum([y[2] for y in song1 if y[0] == 'note']) / len([y[2] for y in song1 if y[0] == 'note'])) |
|
|
|
song1.sort(reverse=False, key=lambda x: x[1]) |
|
|
|
return song1, time, average_delta_st, average_duration |
|
|
|
|
|
|
|
def Tegridy_Score_Slicer(chords_list, number_of_miliseconds_per_slice=2000, overlap_notes = 0, overlap_chords=False): |
|
|
|
'''Tegridy Score Slicer |
|
|
|
Input: Flat chords list |
|
Number of miliseconds per slice |
|
|
|
Output: Sliced chords list |
|
Number of created slices |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
chords = [] |
|
cho = [] |
|
|
|
time = number_of_miliseconds_per_slice |
|
ptime = 0 |
|
|
|
i = 0 |
|
|
|
pc_idx = 0 |
|
|
|
chords_list.sort(reverse=False, key=lambda x: x[1]) |
|
|
|
for cc in chords_list: |
|
|
|
if cc[1] <= time: |
|
|
|
cho.append(cc) |
|
|
|
if ptime != cc[1]: |
|
pc_idx = cho.index(cc) |
|
|
|
ptime = cc[1] |
|
|
|
|
|
else: |
|
|
|
if overlap_chords: |
|
chords.append(cho) |
|
cho.extend(chords[-1][pc_idx:]) |
|
|
|
else: |
|
chords.append(cho[:pc_idx]) |
|
|
|
cho = [] |
|
|
|
cho.append(cc) |
|
|
|
time += number_of_miliseconds_per_slice |
|
ptime = cc[1] |
|
|
|
i += 1 |
|
|
|
if cho != []: |
|
chords.append(cho) |
|
i += 1 |
|
|
|
return [x for x in chords if x], i |
|
|
|
|
|
|
|
def Tegridy_TXT_Tokenizer(input_TXT_string, line_by_line_TXT_string=True): |
|
|
|
'''Tegridy TXT Tokenizer |
|
|
|
Input: TXT String |
|
|
|
Output: Tokenized TXT string + forward and reverse dics |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
print('Tegridy TXT Tokenizer') |
|
|
|
if line_by_line_TXT_string: |
|
T = input_TXT_string.split() |
|
else: |
|
T = input_TXT_string.split(' ') |
|
|
|
DIC = dict(zip(T, range(len(T)))) |
|
RDIC = dict(zip(range(len(T)), T)) |
|
|
|
TXTT = '' |
|
|
|
for t in T: |
|
try: |
|
TXTT += chr(DIC[t]) |
|
except: |
|
print('Error. Could not finish.') |
|
return TXTT, DIC, RDIC |
|
|
|
print('Done!') |
|
|
|
return TXTT, DIC, RDIC |
|
|
|
|
|
|
|
def Tegridy_TXT_DeTokenizer(input_Tokenized_TXT_string, RDIC): |
|
|
|
'''Tegridy TXT Tokenizer |
|
|
|
Input: Tokenized TXT String |
|
|
|
|
|
Output: DeTokenized TXT string |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
print('Tegridy TXT DeTokenizer') |
|
|
|
Q = list(input_Tokenized_TXT_string) |
|
c = 0 |
|
RTXT = '' |
|
for q in Q: |
|
try: |
|
RTXT += RDIC[ord(q)] + chr(10) |
|
except: |
|
c+=1 |
|
|
|
print('Number of errors:', c) |
|
|
|
print('Done!') |
|
|
|
return RTXT |
|
|
|
|
|
|
|
def Tegridy_List_Slicer(input_list, slices_length_in_notes=20): |
|
|
|
'''Input: List to slice |
|
Desired slices length in notes |
|
|
|
Output: Sliced list of lists |
|
|
|
Project Los Angeles |
|
Tegridy Code 2021''' |
|
|
|
for i in range(0, len(input_list), slices_length_in_notes): |
|
yield input_list[i:i + slices_length_in_notes] |
|
|
|
|
|
|
|
def Tegridy_Split_List(list_to_split, split_value=0): |
|
|
|
|
|
|
|
|
|
|
|
size = len(list_to_split) |
|
idx_list = [idx + 1 for idx, val in |
|
enumerate(list_to_split) if val == split_value] |
|
|
|
|
|
res = [list_to_split[i: j] for i, j in |
|
zip([0] + idx_list, idx_list + |
|
([size] if idx_list[-1] != size else []))] |
|
|
|
|
|
|
|
|
|
return res |
|
|
|
|
|
|
|
|
|
|
|
def tones_chord_to_bits(chord): |
|
bits = [0] * 12 |
|
for num in chord: |
|
bits[num] = 1 |
|
|
|
return bits |
|
|
|
def bits_to_tones_chord(bits): |
|
return [i for i, bit in enumerate(bits) if bit == 1] |
|
|
|
def shift_bits(bits, n): |
|
return bits[-n:] + bits[:-n] |
|
|
|
def bits_to_int(bits, shift_bits_value=0): |
|
bits = shift_bits(bits, shift_bits_value) |
|
result = 0 |
|
for bit in bits: |
|
result = (result << 1) | bit |
|
|
|
return result |
|
|
|
def int_to_bits(n): |
|
bits = [0] * 12 |
|
for i in range(12): |
|
bits[11 - i] = n % 2 |
|
n //= 2 |
|
|
|
return bits |
|
|
|
def bad_chord(chord): |
|
bad = any(b - a == 1 for a, b in zip(chord, chord[1:])) |
|
if (0 in chord) and (11 in chord): |
|
bad = True |
|
|
|
return bad |
|
|
|
def pitches_chord_to_int(pitches_chord, tones_transpose_value=0): |
|
|
|
pitches_chord = [x for x in pitches_chord if 0 < x < 128] |
|
|
|
if not (-12 < tones_transpose_value < 12): |
|
tones_transpose_value = 0 |
|
|
|
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))]))) |
|
bits = tones_chord_to_bits(tones_chord) |
|
integer = bits_to_int(bits, shift_bits_value=tones_transpose_value) |
|
|
|
return integer |
|
|
|
def int_to_pitches_chord(integer, chord_base_pitch=60): |
|
if 0 < integer < 4096: |
|
bits = int_to_bits(integer) |
|
tones_chord = bits_to_tones_chord(bits) |
|
if not bad_chord(tones_chord): |
|
pitches_chord = [t+chord_base_pitch for t in tones_chord] |
|
return [pitches_chord, tones_chord] |
|
|
|
else: |
|
return 0 |
|
|
|
else: |
|
return -1 |
|
|
|
|
|
|
|
def bad_chord(chord): |
|
bad = any(b - a == 1 for a, b in zip(chord, chord[1:])) |
|
if (0 in chord) and (11 in chord): |
|
bad = True |
|
|
|
return bad |
|
|
|
def validate_pitches_chord(pitches_chord, return_sorted = True): |
|
|
|
pitches_chord = sorted(list(set([x for x in pitches_chord if 0 < x < 128]))) |
|
|
|
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))]))) |
|
|
|
if not bad_chord(tones_chord): |
|
if return_sorted: |
|
pitches_chord.sort(reverse=True) |
|
return pitches_chord |
|
|
|
else: |
|
if 0 in tones_chord and 11 in tones_chord: |
|
tones_chord.remove(0) |
|
|
|
fixed_tones = [[a, b] for a, b in zip(tones_chord, tones_chord[1:]) if b-a != 1] |
|
|
|
fixed_tones_chord = [] |
|
for f in fixed_tones: |
|
fixed_tones_chord.extend(f) |
|
fixed_tones_chord = list(set(fixed_tones_chord)) |
|
|
|
fixed_pitches_chord = [] |
|
|
|
for p in pitches_chord: |
|
if (p % 12) in fixed_tones_chord: |
|
fixed_pitches_chord.append(p) |
|
|
|
if return_sorted: |
|
fixed_pitches_chord.sort(reverse=True) |
|
|
|
return fixed_pitches_chord |
|
|
|
def validate_pitches(chord, channel_to_check = 0, return_sorted = True): |
|
|
|
pitches_chord = sorted(list(set([x[4] for x in chord if 0 < x[4] < 128 and x[3] == channel_to_check]))) |
|
|
|
if pitches_chord: |
|
|
|
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))]))) |
|
|
|
if not bad_chord(tones_chord): |
|
if return_sorted: |
|
chord.sort(key = lambda x: x[4], reverse=True) |
|
return chord |
|
|
|
else: |
|
if 0 in tones_chord and 11 in tones_chord: |
|
tones_chord.remove(0) |
|
|
|
fixed_tones = [[a, b] for a, b in zip(tones_chord, tones_chord[1:]) if b-a != 1] |
|
|
|
fixed_tones_chord = [] |
|
for f in fixed_tones: |
|
fixed_tones_chord.extend(f) |
|
fixed_tones_chord = list(set(fixed_tones_chord)) |
|
|
|
fixed_chord = [] |
|
|
|
for c in chord: |
|
if c[3] == channel_to_check: |
|
if (c[4] % 12) in fixed_tones_chord: |
|
fixed_chord.append(c) |
|
else: |
|
fixed_chord.append(c) |
|
|
|
if return_sorted: |
|
fixed_chord.sort(key = lambda x: x[4], reverse=True) |
|
|
|
return fixed_chord |
|
|
|
else: |
|
chord.sort(key = lambda x: x[4], reverse=True) |
|
return chord |
|
|
|
def adjust_score_velocities(score, max_velocity): |
|
|
|
min_velocity = min([c[5] for c in score]) |
|
max_velocity_all_channels = max([c[5] for c in score]) |
|
min_velocity_ratio = min_velocity / max_velocity_all_channels |
|
|
|
max_channel_velocity = max([c[5] for c in score]) |
|
if max_channel_velocity < min_velocity: |
|
factor = max_velocity / min_velocity |
|
else: |
|
factor = max_velocity / max_channel_velocity |
|
for i in range(len(score)): |
|
score[i][5] = int(score[i][5] * factor) |
|
|
|
def chordify_score(score, |
|
return_choridfied_score=True, |
|
return_detected_score_information=False |
|
): |
|
|
|
if score: |
|
|
|
num_tracks = 1 |
|
single_track_score = [] |
|
score_num_ticks = 0 |
|
|
|
if type(score[0]) == int and len(score) > 1: |
|
|
|
score_type = 'MIDI_PY' |
|
score_num_ticks = score[0] |
|
|
|
while num_tracks < len(score): |
|
for event in score[num_tracks]: |
|
single_track_score.append(event) |
|
num_tracks += 1 |
|
|
|
else: |
|
score_type = 'CUSTOM' |
|
single_track_score = score |
|
|
|
if single_track_score and single_track_score[0]: |
|
|
|
try: |
|
|
|
if type(single_track_score[0][0]) == str or single_track_score[0][0] == 'note': |
|
single_track_score.sort(key = lambda x: x[1]) |
|
score_timings = [s[1] for s in single_track_score] |
|
else: |
|
score_timings = [s[0] for s in single_track_score] |
|
|
|
is_score_time_absolute = lambda sct: all(x <= y for x, y in zip(sct, sct[1:])) |
|
|
|
score_timings_type = '' |
|
|
|
if is_score_time_absolute(score_timings): |
|
score_timings_type = 'ABS' |
|
|
|
chords = [] |
|
cho = [] |
|
|
|
if score_type == 'MIDI_PY': |
|
pe = single_track_score[0] |
|
else: |
|
pe = single_track_score[0] |
|
|
|
for e in single_track_score: |
|
|
|
if score_type == 'MIDI_PY': |
|
time = e[1] |
|
ptime = pe[1] |
|
else: |
|
time = e[0] |
|
ptime = pe[0] |
|
|
|
if time == ptime: |
|
cho.append(e) |
|
|
|
else: |
|
if len(cho) > 0: |
|
chords.append(cho) |
|
cho = [] |
|
cho.append(e) |
|
|
|
pe = e |
|
|
|
if len(cho) > 0: |
|
chords.append(cho) |
|
|
|
else: |
|
score_timings_type = 'REL' |
|
|
|
chords = [] |
|
cho = [] |
|
|
|
for e in single_track_score: |
|
|
|
if score_type == 'MIDI_PY': |
|
time = e[1] |
|
else: |
|
time = e[0] |
|
|
|
if time == 0: |
|
cho.append(e) |
|
|
|
else: |
|
if len(cho) > 0: |
|
chords.append(cho) |
|
cho = [] |
|
cho.append(e) |
|
|
|
if len(cho) > 0: |
|
chords.append(cho) |
|
|
|
requested_data = [] |
|
|
|
if return_detected_score_information: |
|
|
|
detected_score_information = [] |
|
|
|
detected_score_information.append(['Score type', score_type]) |
|
detected_score_information.append(['Score timings type', score_timings_type]) |
|
detected_score_information.append(['Score tpq', score_num_ticks]) |
|
detected_score_information.append(['Score number of tracks', num_tracks]) |
|
|
|
requested_data.append(detected_score_information) |
|
|
|
if return_choridfied_score and return_detected_score_information: |
|
requested_data.append(chords) |
|
|
|
if return_choridfied_score and not return_detected_score_information: |
|
requested_data.extend(chords) |
|
|
|
return requested_data |
|
|
|
except Exception as e: |
|
print('Error!') |
|
print('Check score for consistency and compatibility!') |
|
print('Exception detected:', e) |
|
|
|
else: |
|
return None |
|
|
|
else: |
|
return None |
|
|
|
def fix_monophonic_score_durations(monophonic_score): |
|
|
|
fixed_score = [] |
|
|
|
if monophonic_score[0][0] == 'note': |
|
|
|
for i in range(len(monophonic_score)-1): |
|
note = monophonic_score[i] |
|
|
|
nmt = monophonic_score[i+1][1] |
|
|
|
if note[1]+note[2] >= nmt: |
|
note_dur = nmt-note[1]-1 |
|
else: |
|
note_dur = note[2] |
|
|
|
new_note = [note[0], note[1], note_dur] + note[3:] |
|
|
|
fixed_score.append(new_note) |
|
|
|
fixed_score.append(monophonic_score[-1]) |
|
|
|
elif type(monophonic_score[0][0]) == int: |
|
|
|
for i in range(len(monophonic_score)-1): |
|
note = monophonic_score[i] |
|
|
|
nmt = monophonic_score[i+1][0] |
|
|
|
if note[0]+note[1] >= nmt: |
|
note_dur = nmt-note[0]-1 |
|
else: |
|
note_dur = note[1] |
|
|
|
new_note = [note[0], note_dur] + note[2:] |
|
|
|
fixed_score.append(new_note) |
|
|
|
fixed_score.append(monophonic_score[-1]) |
|
|
|
return fixed_score |
|
|
|
|
|
|
|
from itertools import product |
|
|
|
ALL_CHORDS = [[0], [7], [5], [9], [2], [4], [11], [10], [8], [6], [3], [1], [0, 9], [2, 5], |
|
[4, 7], [7, 10], [2, 11], [0, 3], [6, 9], [1, 4], [8, 11], [5, 8], [1, 10], |
|
[3, 6], [0, 4], [5, 9], [7, 11], [0, 7], [0, 5], [2, 10], [2, 7], [2, 9], |
|
[2, 6], [4, 11], [4, 9], [3, 7], [5, 10], [1, 9], [0, 8], [6, 11], [3, 11], |
|
[4, 8], [3, 10], [3, 8], [1, 5], [1, 8], [1, 6], [6, 10], [3, 9], [4, 10], |
|
[1, 7], [0, 6], [2, 8], [5, 11], [5, 7], [0, 10], [0, 2], [9, 11], [7, 9], |
|
[2, 4], [4, 6], [3, 5], [8, 10], [6, 8], [1, 3], [1, 11], [2, 7, 11], |
|
[0, 4, 7], [0, 5, 9], [2, 6, 9], [2, 5, 10], [1, 4, 9], [4, 8, 11], [3, 7, 10], |
|
[0, 3, 8], [3, 6, 11], [1, 5, 8], [1, 6, 10], [0, 4, 9], [2, 5, 9], [4, 7, 11], |
|
[2, 7, 10], [2, 6, 11], [0, 3, 7], [0, 5, 8], [1, 4, 8], [1, 6, 9], [3, 8, 11], |
|
[1, 5, 10], [3, 6, 10], [2, 5, 11], [4, 7, 10], [3, 6, 9], [0, 6, 9], |
|
[0, 3, 9], [2, 8, 11], [2, 5, 8], [1, 7, 10], [1, 4, 7], [0, 3, 6], [1, 4, 10], |
|
[5, 8, 11], [2, 5, 7], [0, 7, 10], [0, 2, 9], [0, 3, 5], [6, 9, 11], [4, 7, 9], |
|
[2, 4, 11], [5, 8, 10], [1, 3, 10], [1, 4, 6], [3, 6, 8], [1, 8, 11], |
|
[5, 7, 11], [0, 4, 10], [3, 5, 9], [0, 2, 6], [1, 7, 9], [0, 7, 9], [5, 7, 10], |
|
[2, 8, 10], [3, 9, 11], [0, 2, 5], [2, 4, 8], [2, 4, 7], [0, 2, 7], [2, 7, 9], |
|
[4, 9, 11], [4, 6, 9], [1, 3, 7], [2, 4, 9], [0, 5, 7], [0, 3, 10], [2, 9, 11], |
|
[0, 5, 10], [0, 6, 8], [4, 6, 10], [4, 6, 11], [1, 4, 11], [6, 8, 11], |
|
[1, 5, 11], [1, 6, 11], [1, 8, 10], [1, 6, 8], [3, 5, 8], [3, 8, 10], |
|
[1, 3, 8], [3, 5, 10], [1, 3, 6], [2, 5, 7, 10], [0, 3, 7, 10], [1, 4, 8, 11], |
|
[2, 4, 7, 11], [0, 4, 7, 9], [0, 2, 5, 9], [2, 6, 9, 11], [1, 5, 8, 10], |
|
[0, 3, 5, 8], [3, 6, 8, 11], [1, 3, 6, 10], [1, 4, 6, 9], [1, 5, 9], [0, 4, 8], |
|
[2, 6, 10], [3, 7, 11], [0, 3, 6, 9], [2, 5, 8, 11], [1, 4, 7, 10], |
|
[2, 5, 7, 11], [0, 2, 6, 9], [0, 4, 7, 10], [2, 4, 8, 11], [0, 3, 5, 9], |
|
[1, 4, 7, 9], [3, 6, 9, 11], [2, 5, 8, 10], [1, 4, 6, 10], [0, 3, 6, 8], |
|
[1, 3, 7, 10], [1, 5, 8, 11], [2, 4, 10], [5, 9, 11], [1, 5, 7], [0, 2, 8], |
|
[0, 4, 6], [1, 7, 11], [3, 7, 9], [1, 3, 9], [7, 9, 11], [5, 7, 9], [0, 6, 10], |
|
[0, 2, 10], [2, 6, 8], [0, 2, 4], [4, 8, 10], [1, 9, 11], [2, 4, 6], |
|
[3, 5, 11], [3, 5, 7], [0, 8, 10], [4, 6, 8], [1, 3, 11], [6, 8, 10], |
|
[1, 3, 5], [0, 2, 5, 10], [0, 5, 7, 9], [0, 3, 8, 10], [0, 2, 4, 7], |
|
[4, 6, 8, 11], [3, 5, 7, 10], [2, 7, 9, 11], [2, 4, 6, 9], [1, 6, 8, 10], |
|
[1, 4, 9, 11], [1, 3, 5, 8], [1, 3, 6, 11], [2, 5, 9, 11], [2, 4, 7, 10], |
|
[0, 2, 5, 8], [1, 5, 7, 10], [0, 4, 6, 9], [1, 3, 6, 9], [0, 3, 6, 10], |
|
[2, 6, 8, 11], [0, 2, 7, 9], [1, 4, 8, 10], [0, 3, 7, 9], [3, 5, 8, 11], |
|
[0, 5, 7, 10], [0, 2, 5, 7], [1, 4, 7, 11], [2, 4, 7, 9], [0, 3, 5, 10], |
|
[4, 6, 9, 11], [1, 4, 6, 11], [2, 4, 9, 11], [1, 6, 8, 11], [1, 3, 6, 8], |
|
[1, 3, 8, 10], [3, 5, 8, 10], [4, 7, 9, 11], [0, 2, 7, 10], [2, 5, 7, 9], |
|
[0, 2, 4, 9], [1, 6, 9, 11], [2, 4, 6, 11], [0, 3, 5, 7], [0, 5, 8, 10], |
|
[1, 4, 6, 8], [1, 3, 5, 10], [1, 3, 8, 11], [3, 6, 8, 10], [0, 2, 5, 7, 10], |
|
[0, 2, 4, 7, 9], [0, 2, 5, 7, 9], [1, 3, 7, 9], [1, 4, 6, 9, 11], |
|
[1, 3, 6, 8, 11], [3, 5, 9, 11], [1, 3, 6, 8, 10], [1, 4, 6, 8, 11], |
|
[1, 3, 5, 8, 10], [2, 4, 6, 9, 11], [2, 4, 8, 10], [2, 4, 7, 9, 11], |
|
[0, 3, 5, 7, 10], [1, 5, 7, 11], [0, 2, 6, 8], [0, 3, 5, 8, 10], [0, 4, 6, 10], |
|
[1, 3, 5, 9], [1, 5, 7, 9], [2, 6, 8, 10], [3, 7, 9, 11], [0, 2, 4, 8], |
|
[0, 4, 6, 8], [0, 4, 8, 10], [2, 4, 6, 10], [1, 3, 7, 11], [0, 2, 6, 10], |
|
[1, 5, 9, 11], [3, 5, 7, 11], [1, 7, 9, 11], [0, 2, 4, 6], [1, 3, 9, 11], |
|
[0, 2, 4, 10], [5, 7, 9, 11], [2, 4, 6, 8], [0, 2, 8, 10], [3, 5, 7, 9], |
|
[1, 3, 5, 7], [4, 6, 8, 10], [0, 6, 8, 10], [1, 3, 5, 11], [0, 3, 6, 8, 10], |
|
[0, 2, 4, 6, 9], [1, 4, 7, 9, 11], [2, 4, 6, 8, 11], [1, 3, 6, 9, 11], |
|
[1, 3, 5, 8, 11], [0, 2, 5, 8, 10], [1, 4, 6, 8, 10], [0, 3, 5, 7, 9], |
|
[2, 5, 7, 9, 11], [1, 3, 5, 7, 10], [0, 2, 4, 7, 10], [1, 3, 5, 7, 9], |
|
[1, 3, 5, 9, 11], [1, 5, 7, 9, 11], [1, 3, 7, 9, 11], [3, 5, 7, 9, 11], |
|
[2, 4, 6, 8, 10], [0, 4, 6, 8, 10], [0, 2, 6, 8, 10], [1, 3, 5, 7, 11], |
|
[0, 2, 4, 8, 10], [0, 2, 4, 6, 8], [0, 2, 4, 6, 10], [0, 2, 4, 6, 8, 10], |
|
[1, 3, 5, 7, 9, 11]] |
|
|
|
def find_exact_match_variable_length(list_of_lists, target_list, uncertain_indices): |
|
|
|
possible_values = {idx: set() for idx in uncertain_indices} |
|
for sublist in list_of_lists: |
|
for idx in uncertain_indices: |
|
if idx < len(sublist): |
|
possible_values[idx].add(sublist[idx]) |
|
|
|
|
|
uncertain_combinations = product(*(possible_values[idx] for idx in uncertain_indices)) |
|
|
|
for combination in uncertain_combinations: |
|
|
|
test_list = target_list[:] |
|
for idx, value in zip(uncertain_indices, combination): |
|
test_list[idx] = value |
|
|
|
|
|
|
|
for sublist in list_of_lists: |
|
if len(sublist) >= len(test_list) and sublist[:len(test_list)] == test_list: |
|
return sublist |
|
|
|
return None |
|
|
|
|
|
def advanced_validate_chord_pitches(chord, channel_to_check = 0, return_sorted = True): |
|
|
|
pitches_chord = sorted(list(set([x[4] for x in chord if 0 < x[4] < 128 and x[3] == channel_to_check]))) |
|
|
|
if pitches_chord: |
|
|
|
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))]))) |
|
|
|
if not bad_chord(tones_chord): |
|
if return_sorted: |
|
chord.sort(key = lambda x: x[4], reverse=True) |
|
return chord |
|
|
|
else: |
|
bad_chord_indices = list(set([i for s in [[tones_chord.index(a), tones_chord.index(b)] for a, b in zip(tones_chord, tones_chord[1:]) if b-a == 1] for i in s])) |
|
|
|
good_tones_chord = find_exact_match_variable_length(ALL_CHORDS, tones_chord, bad_chord_indices) |
|
|
|
if good_tones_chord is not None: |
|
|
|
fixed_chord = [] |
|
|
|
for c in chord: |
|
if c[3] == channel_to_check: |
|
if (c[4] % 12) in good_tones_chord: |
|
fixed_chord.append(c) |
|
else: |
|
fixed_chord.append(c) |
|
|
|
if return_sorted: |
|
fixed_chord.sort(key = lambda x: x[4], reverse=True) |
|
|
|
else: |
|
|
|
if 0 in tones_chord and 11 in tones_chord: |
|
tones_chord.remove(0) |
|
|
|
fixed_tones = [[a, b] for a, b in zip(tones_chord, tones_chord[1:]) if b-a != 1] |
|
|
|
fixed_tones_chord = [] |
|
for f in fixed_tones: |
|
fixed_tones_chord.extend(f) |
|
fixed_tones_chord = list(set(fixed_tones_chord)) |
|
|
|
fixed_chord = [] |
|
|
|
for c in chord: |
|
if c[3] == channel_to_check: |
|
if (c[4] % 12) in fixed_tones_chord: |
|
fixed_chord.append(c) |
|
else: |
|
fixed_chord.append(c) |
|
|
|
if return_sorted: |
|
fixed_chord.sort(key = lambda x: x[4], reverse=True) |
|
|
|
return fixed_chord |
|
|
|
else: |
|
chord.sort(key = lambda x: x[4], reverse=True) |
|
return chord |
|
|
|
|
|
|
|
def analyze_score_pitches(score, channels_to_analyze=[0]): |
|
|
|
analysis = {} |
|
|
|
score_notes = [s for s in score if s[3] in channels_to_analyze] |
|
|
|
cscore = chordify_score(score_notes) |
|
|
|
chords_tones = [] |
|
|
|
all_tones = [] |
|
|
|
all_chords_good = True |
|
|
|
bad_chords = [] |
|
|
|
for c in cscore: |
|
tones = sorted(list(set([t[4] % 12 for t in c]))) |
|
chords_tones.append(tones) |
|
all_tones.extend(tones) |
|
|
|
if tones not in ALL_CHORDS: |
|
all_chords_good = False |
|
bad_chords.append(tones) |
|
|
|
analysis['Number of notes'] = len(score_notes) |
|
analysis['Number of chords'] = len(cscore) |
|
analysis['Score tones'] = sorted(list(set(all_tones))) |
|
analysis['Shortest chord'] = sorted(min(chords_tones, key=len)) |
|
analysis['Longest chord'] = sorted(max(chords_tones, key=len)) |
|
analysis['All chords good'] = all_chords_good |
|
analysis['Bad chords'] = bad_chords |
|
|
|
return analysis |
|
|
|
|
|
|
|
ALL_CHORDS_GROUPED = [[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]], |
|
[[0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], |
|
[1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], |
|
[2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [3, 5], |
|
[3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [4, 6], [4, 7], [4, 8], |
|
[4, 9], [4, 10], [4, 11], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [6, 8], |
|
[6, 9], [6, 10], [6, 11], [7, 9], [7, 10], [7, 11], [8, 10], [8, 11], |
|
[9, 11]], |
|
[[0, 2, 4], [0, 2, 5], [0, 3, 5], [0, 2, 6], [0, 3, 6], [0, 4, 6], [0, 2, 7], |
|
[0, 3, 7], [0, 4, 7], [0, 5, 7], [0, 2, 8], [0, 3, 8], [0, 4, 8], [0, 5, 8], |
|
[0, 6, 8], [0, 2, 9], [0, 3, 9], [0, 4, 9], [0, 5, 9], [0, 6, 9], [0, 7, 9], |
|
[0, 2, 10], [0, 3, 10], [0, 4, 10], [0, 5, 10], [0, 6, 10], [0, 7, 10], |
|
[0, 8, 10], [1, 3, 5], [1, 3, 6], [1, 4, 6], [1, 3, 7], [1, 4, 7], [1, 5, 7], |
|
[1, 3, 8], [1, 4, 8], [1, 5, 8], [1, 6, 8], [1, 3, 9], [1, 4, 9], [1, 5, 9], |
|
[1, 6, 9], [1, 7, 9], [1, 3, 10], [1, 4, 10], [1, 5, 10], [1, 6, 10], |
|
[1, 7, 10], [1, 8, 10], [1, 3, 11], [1, 4, 11], [1, 5, 11], [1, 6, 11], |
|
[1, 7, 11], [1, 8, 11], [1, 9, 11], [2, 4, 6], [2, 4, 7], [2, 5, 7], |
|
[2, 4, 8], [2, 5, 8], [2, 6, 8], [2, 4, 9], [2, 5, 9], [2, 6, 9], [2, 7, 9], |
|
[2, 4, 10], [2, 5, 10], [2, 6, 10], [2, 7, 10], [2, 8, 10], [2, 4, 11], |
|
[2, 5, 11], [2, 6, 11], [2, 7, 11], [2, 8, 11], [2, 9, 11], [3, 5, 7], |
|
[3, 5, 8], [3, 6, 8], [3, 5, 9], [3, 6, 9], [3, 7, 9], [3, 5, 10], [3, 6, 10], |
|
[3, 7, 10], [3, 8, 10], [3, 5, 11], [3, 6, 11], [3, 7, 11], [3, 8, 11], |
|
[3, 9, 11], [4, 6, 8], [4, 6, 9], [4, 7, 9], [4, 6, 10], [4, 7, 10], |
|
[4, 8, 10], [4, 6, 11], [4, 7, 11], [4, 8, 11], [4, 9, 11], [5, 7, 9], |
|
[5, 7, 10], [5, 8, 10], [5, 7, 11], [5, 8, 11], [5, 9, 11], [6, 8, 10], |
|
[6, 8, 11], [6, 9, 11], [7, 9, 11]], |
|
[[0, 2, 4, 6], [0, 2, 4, 7], [0, 2, 5, 7], [0, 3, 5, 7], [0, 2, 4, 8], |
|
[0, 2, 5, 8], [0, 2, 6, 8], [0, 3, 5, 8], [0, 3, 6, 8], [0, 4, 6, 8], |
|
[0, 2, 4, 9], [0, 2, 5, 9], [0, 2, 6, 9], [0, 2, 7, 9], [0, 3, 5, 9], |
|
[0, 3, 6, 9], [0, 3, 7, 9], [0, 4, 6, 9], [0, 4, 7, 9], [0, 5, 7, 9], |
|
[0, 2, 4, 10], [0, 2, 5, 10], [0, 2, 6, 10], [0, 2, 7, 10], [0, 2, 8, 10], |
|
[0, 3, 5, 10], [0, 3, 6, 10], [0, 3, 7, 10], [0, 3, 8, 10], [0, 4, 6, 10], |
|
[0, 4, 7, 10], [0, 4, 8, 10], [0, 5, 7, 10], [0, 5, 8, 10], [0, 6, 8, 10], |
|
[1, 3, 5, 7], [1, 3, 5, 8], [1, 3, 6, 8], [1, 4, 6, 8], [1, 3, 5, 9], |
|
[1, 3, 6, 9], [1, 3, 7, 9], [1, 4, 6, 9], [1, 4, 7, 9], [1, 5, 7, 9], |
|
[1, 3, 5, 10], [1, 3, 6, 10], [1, 3, 7, 10], [1, 3, 8, 10], [1, 4, 6, 10], |
|
[1, 4, 7, 10], [1, 4, 8, 10], [1, 5, 7, 10], [1, 5, 8, 10], [1, 6, 8, 10], |
|
[1, 3, 5, 11], [1, 3, 6, 11], [1, 3, 7, 11], [1, 3, 8, 11], [1, 3, 9, 11], |
|
[1, 4, 6, 11], [1, 4, 7, 11], [1, 4, 8, 11], [1, 4, 9, 11], [1, 5, 7, 11], |
|
[1, 5, 8, 11], [1, 5, 9, 11], [1, 6, 8, 11], [1, 6, 9, 11], [1, 7, 9, 11], |
|
[2, 4, 6, 8], [2, 4, 6, 9], [2, 4, 7, 9], [2, 5, 7, 9], [2, 4, 6, 10], |
|
[2, 4, 7, 10], [2, 4, 8, 10], [2, 5, 7, 10], [2, 5, 8, 10], [2, 6, 8, 10], |
|
[2, 4, 6, 11], [2, 4, 7, 11], [2, 4, 8, 11], [2, 4, 9, 11], [2, 5, 7, 11], |
|
[2, 5, 8, 11], [2, 5, 9, 11], [2, 6, 8, 11], [2, 6, 9, 11], [2, 7, 9, 11], |
|
[3, 5, 7, 9], [3, 5, 7, 10], [3, 5, 8, 10], [3, 6, 8, 10], [3, 5, 7, 11], |
|
[3, 5, 8, 11], [3, 5, 9, 11], [3, 6, 8, 11], [3, 6, 9, 11], [3, 7, 9, 11], |
|
[4, 6, 8, 10], [4, 6, 8, 11], [4, 6, 9, 11], [4, 7, 9, 11], [5, 7, 9, 11]], |
|
[[0, 2, 4, 6, 8], [0, 2, 4, 6, 9], [0, 2, 4, 7, 9], [0, 2, 5, 7, 9], |
|
[0, 3, 5, 7, 9], [0, 2, 4, 6, 10], [0, 2, 4, 7, 10], [0, 2, 4, 8, 10], |
|
[0, 2, 5, 7, 10], [0, 2, 5, 8, 10], [0, 2, 6, 8, 10], [0, 3, 5, 7, 10], |
|
[0, 3, 5, 8, 10], [0, 3, 6, 8, 10], [0, 4, 6, 8, 10], [1, 3, 5, 7, 9], |
|
[1, 3, 5, 7, 10], [1, 3, 5, 8, 10], [1, 3, 6, 8, 10], [1, 4, 6, 8, 10], |
|
[1, 3, 5, 7, 11], [1, 3, 5, 8, 11], [1, 3, 5, 9, 11], [1, 3, 6, 8, 11], |
|
[1, 3, 6, 9, 11], [1, 3, 7, 9, 11], [1, 4, 6, 8, 11], [1, 4, 6, 9, 11], |
|
[1, 4, 7, 9, 11], [1, 5, 7, 9, 11], [2, 4, 6, 8, 10], [2, 4, 6, 8, 11], |
|
[2, 4, 6, 9, 11], [2, 4, 7, 9, 11], [2, 5, 7, 9, 11], [3, 5, 7, 9, 11]], |
|
[[0, 2, 4, 6, 8, 10], [1, 3, 5, 7, 9, 11]]] |
|
|
|
def group_sublists_by_length(lst): |
|
unique_lengths = sorted(list(set(map(len, lst))), reverse=True) |
|
return [[x for x in lst if len(x) == i] for i in unique_lengths] |
|
|
|
def pitches_to_tones_chord(pitches): |
|
return sorted(set([p % 12 for p in pitches])) |
|
|
|
def tones_chord_to_pitches(tones_chord, base_pitch=60): |
|
return [t+base_pitch for t in tones_chord if 0 <= t < 12] |
|
|
|
|
|
|
|
def advanced_score_processor(raw_score, |
|
patches_to_analyze=list(range(129)), |
|
return_score_analysis=False, |
|
return_enhanced_score=False, |
|
return_enhanced_score_notes=False, |
|
return_enhanced_monophonic_melody=False, |
|
return_chordified_enhanced_score=False, |
|
return_chordified_enhanced_score_with_lyrics=False, |
|
return_score_tones_chords=False, |
|
return_text_and_lyric_events=False |
|
): |
|
|
|
'''TMIDIX Advanced Score Processor''' |
|
|
|
|
|
|
|
if raw_score and type(raw_score) == list: |
|
|
|
num_ticks = 0 |
|
num_tracks = 1 |
|
|
|
basic_single_track_score = [] |
|
|
|
if type(raw_score[0]) != int: |
|
if len(raw_score[0]) < 5 and type(raw_score[0][0]) != str: |
|
return ['Check score for errors and compatibility!'] |
|
|
|
else: |
|
basic_single_track_score = copy.deepcopy(raw_score) |
|
|
|
else: |
|
num_ticks = raw_score[0] |
|
while num_tracks < len(raw_score): |
|
for event in raw_score[num_tracks]: |
|
ev = copy.deepcopy(event) |
|
basic_single_track_score.append(ev) |
|
num_tracks += 1 |
|
|
|
basic_single_track_score.sort(key=lambda x: x[4] if x[0] == 'note' else 128, reverse=True) |
|
basic_single_track_score.sort(key=lambda x: x[1]) |
|
|
|
enhanced_single_track_score = [] |
|
patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
|
all_score_patches = [] |
|
num_patch_changes = 0 |
|
|
|
for event in basic_single_track_score: |
|
if event[0] == 'patch_change': |
|
patches[event[2]] = event[3] |
|
enhanced_single_track_score.append(event) |
|
num_patch_changes += 1 |
|
|
|
if event[0] == 'note': |
|
if event[3] != 9: |
|
event.extend([patches[event[3]]]) |
|
all_score_patches.extend([patches[event[3]]]) |
|
else: |
|
event.extend([128]) |
|
all_score_patches.extend([128]) |
|
|
|
if enhanced_single_track_score: |
|
if (event[1] == enhanced_single_track_score[-1][1]): |
|
if ([event[3], event[4]] != enhanced_single_track_score[-1][3:5]): |
|
enhanced_single_track_score.append(event) |
|
else: |
|
enhanced_single_track_score.append(event) |
|
|
|
else: |
|
enhanced_single_track_score.append(event) |
|
|
|
if event[0] not in ['note', 'patch_change']: |
|
enhanced_single_track_score.append(event) |
|
|
|
enhanced_single_track_score.sort(key=lambda x: x[6] if x[0] == 'note' else -1) |
|
enhanced_single_track_score.sort(key=lambda x: x[4] if x[0] == 'note' else 128, reverse=True) |
|
enhanced_single_track_score.sort(key=lambda x: x[1]) |
|
|
|
|
|
|
|
cscore = [] |
|
cescore = [] |
|
chords_tones = [] |
|
tones_chords = [] |
|
all_tones = [] |
|
all_chords_good = True |
|
bad_chords = [] |
|
bad_chords_count = 0 |
|
score_notes = [] |
|
score_pitches = [] |
|
score_patches = [] |
|
num_text_events = 0 |
|
num_lyric_events = 0 |
|
num_other_events = 0 |
|
text_and_lyric_events = [] |
|
text_and_lyric_events_latin = None |
|
|
|
analysis = {} |
|
|
|
score_notes = [s for s in enhanced_single_track_score if s[0] == 'note' and s[6] in patches_to_analyze] |
|
score_patches = [sn[6] for sn in score_notes] |
|
|
|
if return_text_and_lyric_events: |
|
text_and_lyric_events = [e for e in enhanced_single_track_score if e[0] in ['text_event', 'lyric']] |
|
|
|
if text_and_lyric_events: |
|
text_and_lyric_events_latin = True |
|
for e in text_and_lyric_events: |
|
try: |
|
tle = str(e[2].decode()) |
|
except: |
|
tle = str(e[2]) |
|
|
|
for c in tle: |
|
if not 0 <= ord(c) < 128: |
|
text_and_lyric_events_latin = False |
|
|
|
if (return_chordified_enhanced_score or return_score_analysis) and any(elem in patches_to_analyze for elem in score_patches): |
|
|
|
cescore = chordify_score([num_ticks, enhanced_single_track_score]) |
|
|
|
if return_score_analysis: |
|
|
|
cscore = chordify_score(score_notes) |
|
|
|
score_pitches = [sn[4] for sn in score_notes] |
|
|
|
text_events = [e for e in enhanced_single_track_score if e[0] == 'text_event'] |
|
num_text_events = len(text_events) |
|
|
|
lyric_events = [e for e in enhanced_single_track_score if e[0] == 'lyric'] |
|
num_lyric_events = len(lyric_events) |
|
|
|
other_events = [e for e in enhanced_single_track_score if e[0] not in ['note', 'patch_change', 'text_event', 'lyric']] |
|
num_other_events = len(other_events) |
|
|
|
for c in cscore: |
|
tones = sorted(set([t[4] % 12 for t in c if t[3] != 9])) |
|
|
|
if tones: |
|
chords_tones.append(tones) |
|
all_tones.extend(tones) |
|
|
|
if tones not in ALL_CHORDS: |
|
all_chords_good = False |
|
bad_chords.append(tones) |
|
bad_chords_count += 1 |
|
|
|
analysis['Number of ticks per quarter note'] = num_ticks |
|
analysis['Number of tracks'] = num_tracks |
|
analysis['Number of all events'] = len(enhanced_single_track_score) |
|
analysis['Number of patch change events'] = num_patch_changes |
|
analysis['Number of text events'] = num_text_events |
|
analysis['Number of lyric events'] = num_lyric_events |
|
analysis['All text and lyric events Latin'] = text_and_lyric_events_latin |
|
analysis['Number of other events'] = num_other_events |
|
analysis['Number of score notes'] = len(score_notes) |
|
analysis['Number of score chords'] = len(cscore) |
|
analysis['Score patches'] = sorted(set(score_patches)) |
|
analysis['Score pitches'] = sorted(set(score_pitches)) |
|
analysis['Score tones'] = sorted(set(all_tones)) |
|
if chords_tones: |
|
analysis['Shortest chord'] = sorted(min(chords_tones, key=len)) |
|
analysis['Longest chord'] = sorted(max(chords_tones, key=len)) |
|
analysis['All chords good'] = all_chords_good |
|
analysis['Number of bad chords'] = bad_chords_count |
|
analysis['Bad chords'] = sorted([list(c) for c in set(tuple(bc) for bc in bad_chords)]) |
|
|
|
else: |
|
analysis['Error'] = 'Provided score does not have specified patches to analyse' |
|
analysis['Provided patches to analyse'] = sorted(patches_to_analyze) |
|
analysis['Patches present in the score'] = sorted(set(all_score_patches)) |
|
|
|
if return_enhanced_monophonic_melody: |
|
|
|
score_notes_copy = copy.deepcopy(score_notes) |
|
chordified_score_notes = chordify_score(score_notes_copy) |
|
|
|
melody = [c[0] for c in chordified_score_notes] |
|
|
|
fixed_melody = [] |
|
|
|
for i in range(len(melody)-1): |
|
note = melody[i] |
|
nmt = melody[i+1][1] |
|
|
|
if note[1]+note[2] >= nmt: |
|
note_dur = nmt-note[1]-1 |
|
else: |
|
note_dur = note[2] |
|
|
|
melody[i][2] = note_dur |
|
|
|
fixed_melody.append(melody[i]) |
|
fixed_melody.append(melody[-1]) |
|
|
|
if return_score_tones_chords: |
|
cscore = chordify_score(score_notes) |
|
for c in cscore: |
|
tones_chord = sorted(set([t[4] % 12 for t in c if t[3] != 9])) |
|
if tones_chord: |
|
tones_chords.append(tones_chord) |
|
|
|
if return_chordified_enhanced_score_with_lyrics: |
|
score_with_lyrics = [e for e in enhanced_single_track_score if e[0] in ['note', 'text_event', 'lyric']] |
|
chordified_enhanced_score_with_lyrics = chordify_score(score_with_lyrics) |
|
|
|
|
|
|
|
requested_data = [] |
|
|
|
if return_score_analysis and analysis: |
|
requested_data.append([[k, v] for k, v in analysis.items()]) |
|
|
|
if return_enhanced_score and enhanced_single_track_score: |
|
requested_data.append([num_ticks, enhanced_single_track_score]) |
|
|
|
if return_enhanced_score_notes and score_notes: |
|
requested_data.append(score_notes) |
|
|
|
if return_enhanced_monophonic_melody and fixed_melody: |
|
requested_data.append(fixed_melody) |
|
|
|
if return_chordified_enhanced_score and cescore: |
|
requested_data.append(cescore) |
|
|
|
if return_chordified_enhanced_score_with_lyrics and chordified_enhanced_score_with_lyrics: |
|
requested_data.append(chordified_enhanced_score_with_lyrics) |
|
|
|
if return_score_tones_chords and tones_chords: |
|
requested_data.append(tones_chords) |
|
|
|
if return_text_and_lyric_events and text_and_lyric_events: |
|
requested_data.append(text_and_lyric_events) |
|
|
|
return requested_data |
|
|
|
else: |
|
return ['Check score for errors and compatibility!'] |
|
|
|
|
|
|
|
import random |
|
import copy |
|
|
|
|
|
|
|
def replace_bad_tones_chord(bad_tones_chord): |
|
bad_chord_p = [0] * 12 |
|
for b in bad_tones_chord: |
|
bad_chord_p[b] = 1 |
|
|
|
match_ratios = [] |
|
good_chords = [] |
|
for c in ALL_CHORDS: |
|
good_chord_p = [0] * 12 |
|
for cc in c: |
|
good_chord_p[cc] = 1 |
|
|
|
good_chords.append(good_chord_p) |
|
match_ratios.append(sum(i == j for i, j in zip(good_chord_p, bad_chord_p)) / len(good_chord_p)) |
|
|
|
best_good_chord = good_chords[match_ratios.index(max(match_ratios))] |
|
|
|
replaced_chord = [] |
|
for i in range(len(best_good_chord)): |
|
if best_good_chord[i] == 1: |
|
replaced_chord.append(i) |
|
|
|
return [replaced_chord, max(match_ratios)] |
|
|
|
|
|
|
|
def check_and_fix_chord(chord, |
|
channel_index=3, |
|
pitch_index=4 |
|
): |
|
|
|
tones_chord = sorted(set([t[pitch_index] % 12 for t in chord if t[channel_index] != 9])) |
|
|
|
notes_events = [t for t in chord if t[channel_index] != 9] |
|
notes_events.sort(key=lambda x: x[pitch_index], reverse=True) |
|
|
|
drums_events = [t for t in chord if t[channel_index] == 9] |
|
|
|
checked_and_fixed_chord = [] |
|
|
|
if tones_chord: |
|
|
|
new_tones_chord = advanced_check_and_fix_tones_chord(tones_chord, high_pitch=notes_events[0][pitch_index]) |
|
|
|
if new_tones_chord != tones_chord: |
|
|
|
if len(notes_events) > 1: |
|
checked_and_fixed_chord.extend([notes_events[0]]) |
|
for cc in notes_events[1:]: |
|
if cc[channel_index] != 9: |
|
if (cc[pitch_index] % 12) in new_tones_chord: |
|
checked_and_fixed_chord.extend([cc]) |
|
checked_and_fixed_chord.extend(drums_events) |
|
else: |
|
checked_and_fixed_chord.extend([notes_events[0]]) |
|
else: |
|
checked_and_fixed_chord.extend(chord) |
|
else: |
|
checked_and_fixed_chord.extend(chord) |
|
|
|
checked_and_fixed_chord.sort(key=lambda x: x[pitch_index], reverse=True) |
|
|
|
return checked_and_fixed_chord |
|
|
|
|
|
|
|
def find_similar_tones_chord(tones_chord, |
|
max_match_threshold=1, |
|
randomize_chords_matches=False, |
|
custom_chords_list=[]): |
|
chord_p = [0] * 12 |
|
for b in tones_chord: |
|
chord_p[b] = 1 |
|
|
|
match_ratios = [] |
|
good_chords = [] |
|
|
|
if custom_chords_list: |
|
CHORDS = copy.deepcopy([list(x) for x in set(tuple(t) for t in custom_chords_list)]) |
|
else: |
|
CHORDS = copy.deepcopy(ALL_CHORDS) |
|
|
|
if randomize_chords_matches: |
|
random.shuffle(CHORDS) |
|
|
|
for c in CHORDS: |
|
good_chord_p = [0] * 12 |
|
for cc in c: |
|
good_chord_p[cc] = 1 |
|
|
|
good_chords.append(good_chord_p) |
|
match_ratio = sum(i == j for i, j in zip(good_chord_p, chord_p)) / len(good_chord_p) |
|
if match_ratio < max_match_threshold: |
|
match_ratios.append(match_ratio) |
|
else: |
|
match_ratios.append(0) |
|
|
|
best_good_chord = good_chords[match_ratios.index(max(match_ratios))] |
|
|
|
similar_chord = [] |
|
for i in range(len(best_good_chord)): |
|
if best_good_chord[i] == 1: |
|
similar_chord.append(i) |
|
|
|
return [similar_chord, max(match_ratios)] |
|
|
|
|
|
|
|
def generate_tones_chords_progression(number_of_chords_to_generate=100, |
|
start_tones_chord=[], |
|
custom_chords_list=[]): |
|
|
|
if start_tones_chord: |
|
start_chord = start_tones_chord |
|
else: |
|
start_chord = random.choice(ALL_CHORDS) |
|
|
|
chord = [] |
|
|
|
chords_progression = [start_chord] |
|
|
|
for i in range(number_of_chords_to_generate): |
|
if not chord: |
|
chord = start_chord |
|
|
|
if custom_chords_list: |
|
chord = find_similar_tones_chord(chord, randomize_chords_matches=True, custom_chords_list=custom_chords_list)[0] |
|
else: |
|
chord = find_similar_tones_chord(chord, randomize_chords_matches=True)[0] |
|
|
|
chords_progression.append(chord) |
|
|
|
return chords_progression |
|
|
|
|
|
|
|
def ascii_texts_search(texts = ['text1', 'text2', 'text3'], |
|
search_query = 'Once upon a time...', |
|
deterministic_matching = False |
|
): |
|
|
|
texts_copy = texts |
|
|
|
if not deterministic_matching: |
|
texts_copy = copy.deepcopy(texts) |
|
random.shuffle(texts_copy) |
|
|
|
clean_texts = [] |
|
|
|
for t in texts_copy: |
|
text_words_list = [at.split(chr(32)) for at in t.split(chr(10))] |
|
|
|
clean_text_words_list = [] |
|
for twl in text_words_list: |
|
for w in twl: |
|
clean_text_words_list.append(''.join(filter(str.isalpha, w.lower()))) |
|
|
|
clean_texts.append(clean_text_words_list) |
|
|
|
text_search_query = [at.split(chr(32)) for at in search_query.split(chr(10))] |
|
clean_text_search_query = [] |
|
for w in text_search_query: |
|
for ww in w: |
|
clean_text_search_query.append(''.join(filter(str.isalpha, ww.lower()))) |
|
|
|
if clean_texts[0] and clean_text_search_query: |
|
texts_match_ratios = [] |
|
words_match_indexes = [] |
|
for t in clean_texts: |
|
word_match_count = 0 |
|
wmis = [] |
|
|
|
for c in clean_text_search_query: |
|
if c in t: |
|
word_match_count += 1 |
|
wmis.append(t.index(c)) |
|
else: |
|
wmis.append(-1) |
|
|
|
words_match_indexes.append(wmis) |
|
words_match_indexes_consequtive = all(abs(b) - abs(a) == 1 for a, b in zip(wmis, wmis[1:])) |
|
words_match_indexes_consequtive_ratio = sum([abs(b) - abs(a) == 1 for a, b in zip(wmis, wmis[1:])]) / len(wmis) |
|
|
|
if words_match_indexes_consequtive: |
|
texts_match_ratios.append(word_match_count / len(clean_text_search_query)) |
|
else: |
|
texts_match_ratios.append(((word_match_count / len(clean_text_search_query)) + words_match_indexes_consequtive_ratio) / 2) |
|
|
|
if texts_match_ratios: |
|
max_text_match_ratio = max(texts_match_ratios) |
|
max_match_ratio_text = texts_copy[texts_match_ratios.index(max_text_match_ratio)] |
|
max_text_words_match_indexes = words_match_indexes[texts_match_ratios.index(max_text_match_ratio)] |
|
|
|
return [max_match_ratio_text, max_text_match_ratio, max_text_words_match_indexes] |
|
|
|
else: |
|
return None |
|
|
|
|
|
|
|
def ascii_text_words_counter(ascii_text): |
|
|
|
text_words_list = [at.split(chr(32)) for at in ascii_text.split(chr(10))] |
|
|
|
clean_text_words_list = [] |
|
for twl in text_words_list: |
|
for w in twl: |
|
wo = '' |
|
for ww in w.lower(): |
|
if 96 < ord(ww) < 123: |
|
wo += ww |
|
if wo != '': |
|
clean_text_words_list.append(wo) |
|
|
|
words = {} |
|
for i in clean_text_words_list: |
|
words[i] = words.get(i, 0) + 1 |
|
|
|
words_sorted = dict(sorted(words.items(), key=lambda item: item[1], reverse=True)) |
|
|
|
return len(clean_text_words_list), words_sorted, clean_text_words_list |
|
|
|
|
|
|
|
def check_and_fix_tones_chord(tones_chord): |
|
|
|
lst = tones_chord |
|
|
|
if len(lst) == 2: |
|
if lst[1] - lst[0] == 1: |
|
return [lst[-1]] |
|
else: |
|
if 0 in lst and 11 in lst: |
|
lst.remove(0) |
|
return lst |
|
|
|
non_consecutive = [lst[0]] |
|
|
|
if len(lst) > 2: |
|
for i in range(1, len(lst) - 1): |
|
if lst[i-1] + 1 != lst[i] and lst[i] + 1 != lst[i+1]: |
|
non_consecutive.append(lst[i]) |
|
non_consecutive.append(lst[-1]) |
|
|
|
if 0 in non_consecutive and 11 in non_consecutive: |
|
non_consecutive.remove(0) |
|
|
|
return non_consecutive |
|
|
|
|
|
|
|
def find_closest_tone(tones, tone): |
|
return min(tones, key=lambda x:abs(x-tone)) |
|
|
|
def advanced_check_and_fix_tones_chord(tones_chord, high_pitch=0): |
|
|
|
lst = tones_chord |
|
|
|
if 0 < high_pitch < 128: |
|
ht = high_pitch % 12 |
|
else: |
|
ht = 12 |
|
|
|
cht = find_closest_tone(lst, ht) |
|
|
|
if len(lst) == 2: |
|
if lst[1] - lst[0] == 1: |
|
return [cht] |
|
else: |
|
if 0 in lst and 11 in lst: |
|
if find_closest_tone([0, 11], cht) == 11: |
|
lst.remove(0) |
|
else: |
|
lst.remove(11) |
|
return lst |
|
|
|
non_consecutive = [] |
|
|
|
if len(lst) > 2: |
|
for i in range(0, len(lst) - 1): |
|
if lst[i] + 1 != lst[i+1]: |
|
non_consecutive.append(lst[i]) |
|
if lst[-1] - lst[-2] > 1: |
|
non_consecutive.append(lst[-1]) |
|
|
|
if cht not in non_consecutive: |
|
non_consecutive.append(cht) |
|
non_consecutive.sort() |
|
if any(abs(non_consecutive[i+1] - non_consecutive[i]) == 1 for i in range(len(non_consecutive) - 1)): |
|
final_list = [x for x in non_consecutive if x == cht or abs(x - cht) > 1] |
|
else: |
|
final_list = non_consecutive |
|
|
|
else: |
|
final_list = non_consecutive |
|
|
|
if 0 in final_list and 11 in final_list: |
|
if find_closest_tone([0, 11], cht) == 11: |
|
final_list.remove(0) |
|
else: |
|
final_list.remove(11) |
|
|
|
if cht in final_list or ht in final_list: |
|
return final_list |
|
else: |
|
return ['Error'] |
|
|
|
|
|
|
|
def create_similarity_matrix(list_of_values, matrix_length=0): |
|
|
|
counts = Counter(list_of_values).items() |
|
|
|
if matrix_length > 0: |
|
sim_matrix = [0] * max(matrix_length, len(list_of_values)) |
|
else: |
|
sim_matrix = [0] * len(counts) |
|
|
|
for c in counts: |
|
sim_matrix[c[0]] = c[1] |
|
|
|
similarity_matrix = [[0] * len(sim_matrix) for _ in range(len(sim_matrix))] |
|
|
|
for i in range(len(sim_matrix)): |
|
for j in range(len(sim_matrix)): |
|
if max(sim_matrix[i], sim_matrix[j]) != 0: |
|
similarity_matrix[i][j] = min(sim_matrix[i], sim_matrix[j]) / max(sim_matrix[i], sim_matrix[j]) |
|
|
|
return similarity_matrix, sim_matrix |
|
|
|
|
|
|
|
def augment_enhanced_score_notes(enhanced_score_notes, |
|
timings_divider=16, |
|
full_sorting=True, |
|
timings_shift=0, |
|
pitch_shift=0 |
|
): |
|
|
|
esn = copy.deepcopy(enhanced_score_notes) |
|
|
|
for e in esn: |
|
e[1] = int(e[1] / timings_divider) + timings_shift |
|
e[2] = int(e[2] / timings_divider) + timings_shift |
|
e[4] = e[4] + pitch_shift |
|
|
|
if full_sorting: |
|
|
|
|
|
esn.sort(key=lambda x: x[6]) |
|
esn.sort(key=lambda x: x[4], reverse=True) |
|
esn.sort(key=lambda x: x[1]) |
|
|
|
return esn |
|
|
|
|
|
|
|
def extract_melody(chordified_enhanced_score, |
|
melody_range=[60, 84], |
|
melody_channel=0, |
|
melody_patch=0 |
|
): |
|
|
|
melody_score = copy.deepcopy([c[0] for c in chordified_enhanced_score if c[0][3] != 9]) |
|
|
|
for e in melody_score: |
|
e[3] = melody_channel |
|
e[6] = melody_patch |
|
|
|
if e[4] < melody_range[0]: |
|
e[4] = (e[4] % 12) + melody_range[0] |
|
|
|
if e[4] >= melody_range[1]: |
|
e[4] = (e[4] % 12) + (melody_range[1]-12) |
|
|
|
return fix_monophonic_score_durations(melody_score) |
|
|
|
|
|
|
|
def flip_enhanced_score_notes(enhanced_score_notes): |
|
|
|
min_pitch = min([e[4] for e in enhanced_score_notes if e[3] != 9]) |
|
|
|
fliped_score_pitches = [127 - e[4]for e in enhanced_score_notes if e[3] != 9] |
|
|
|
delta_min_pitch = min_pitch - min([p for p in fliped_score_pitches]) |
|
|
|
output_score = copy.deepcopy(enhanced_score_notes) |
|
|
|
for e in output_score: |
|
if e[3] != 9: |
|
e[4] = (127 - e[4]) + delta_min_pitch |
|
|
|
return output_score |
|
|
|
|
|
|
|
ALL_CHORDS_SORTED = [[0], [0, 2], [0, 3], [0, 4], [0, 2, 4], [0, 5], [0, 2, 5], [0, 3, 5], [0, 6], |
|
[0, 2, 6], [0, 3, 6], [0, 4, 6], [0, 2, 4, 6], [0, 7], [0, 2, 7], [0, 3, 7], |
|
[0, 4, 7], [0, 5, 7], [0, 2, 4, 7], [0, 2, 5, 7], [0, 3, 5, 7], [0, 8], |
|
[0, 2, 8], [0, 3, 8], [0, 4, 8], [0, 5, 8], [0, 6, 8], [0, 2, 4, 8], |
|
[0, 2, 5, 8], [0, 2, 6, 8], [0, 3, 5, 8], [0, 3, 6, 8], [0, 4, 6, 8], |
|
[0, 2, 4, 6, 8], [0, 9], [0, 2, 9], [0, 3, 9], [0, 4, 9], [0, 5, 9], [0, 6, 9], |
|
[0, 7, 9], [0, 2, 4, 9], [0, 2, 5, 9], [0, 2, 6, 9], [0, 2, 7, 9], |
|
[0, 3, 5, 9], [0, 3, 6, 9], [0, 3, 7, 9], [0, 4, 6, 9], [0, 4, 7, 9], |
|
[0, 5, 7, 9], [0, 2, 4, 6, 9], [0, 2, 4, 7, 9], [0, 2, 5, 7, 9], |
|
[0, 3, 5, 7, 9], [0, 10], [0, 2, 10], [0, 3, 10], [0, 4, 10], [0, 5, 10], |
|
[0, 6, 10], [0, 7, 10], [0, 8, 10], [0, 2, 4, 10], [0, 2, 5, 10], |
|
[0, 2, 6, 10], [0, 2, 7, 10], [0, 2, 8, 10], [0, 3, 5, 10], [0, 3, 6, 10], |
|
[0, 3, 7, 10], [0, 3, 8, 10], [0, 4, 6, 10], [0, 4, 7, 10], [0, 4, 8, 10], |
|
[0, 5, 7, 10], [0, 5, 8, 10], [0, 6, 8, 10], [0, 2, 4, 6, 10], |
|
[0, 2, 4, 7, 10], [0, 2, 4, 8, 10], [0, 2, 5, 7, 10], [0, 2, 5, 8, 10], |
|
[0, 2, 6, 8, 10], [0, 3, 5, 7, 10], [0, 3, 5, 8, 10], [0, 3, 6, 8, 10], |
|
[0, 4, 6, 8, 10], [0, 2, 4, 6, 8, 10], [1], [1, 3], [1, 4], [1, 5], [1, 3, 5], |
|
[1, 6], [1, 3, 6], [1, 4, 6], [1, 7], [1, 3, 7], [1, 4, 7], [1, 5, 7], |
|
[1, 3, 5, 7], [1, 8], [1, 3, 8], [1, 4, 8], [1, 5, 8], [1, 6, 8], [1, 3, 5, 8], |
|
[1, 3, 6, 8], [1, 4, 6, 8], [1, 9], [1, 3, 9], [1, 4, 9], [1, 5, 9], [1, 6, 9], |
|
[1, 7, 9], [1, 3, 5, 9], [1, 3, 6, 9], [1, 3, 7, 9], [1, 4, 6, 9], |
|
[1, 4, 7, 9], [1, 5, 7, 9], [1, 3, 5, 7, 9], [1, 10], [1, 3, 10], [1, 4, 10], |
|
[1, 5, 10], [1, 6, 10], [1, 7, 10], [1, 8, 10], [1, 3, 5, 10], [1, 3, 6, 10], |
|
[1, 3, 7, 10], [1, 3, 8, 10], [1, 4, 6, 10], [1, 4, 7, 10], [1, 4, 8, 10], |
|
[1, 5, 7, 10], [1, 5, 8, 10], [1, 6, 8, 10], [1, 3, 5, 7, 10], |
|
[1, 3, 5, 8, 10], [1, 3, 6, 8, 10], [1, 4, 6, 8, 10], [1, 11], [1, 3, 11], |
|
[1, 4, 11], [1, 5, 11], [1, 6, 11], [1, 7, 11], [1, 8, 11], [1, 9, 11], |
|
[1, 3, 5, 11], [1, 3, 6, 11], [1, 3, 7, 11], [1, 3, 8, 11], [1, 3, 9, 11], |
|
[1, 4, 6, 11], [1, 4, 7, 11], [1, 4, 8, 11], [1, 4, 9, 11], [1, 5, 7, 11], |
|
[1, 5, 8, 11], [1, 5, 9, 11], [1, 6, 8, 11], [1, 6, 9, 11], [1, 7, 9, 11], |
|
[1, 3, 5, 7, 11], [1, 3, 5, 8, 11], [1, 3, 5, 9, 11], [1, 3, 6, 8, 11], |
|
[1, 3, 6, 9, 11], [1, 3, 7, 9, 11], [1, 4, 6, 8, 11], [1, 4, 6, 9, 11], |
|
[1, 4, 7, 9, 11], [1, 5, 7, 9, 11], [1, 3, 5, 7, 9, 11], [2], [2, 4], [2, 5], |
|
[2, 6], [2, 4, 6], [2, 7], [2, 4, 7], [2, 5, 7], [2, 8], [2, 4, 8], [2, 5, 8], |
|
[2, 6, 8], [2, 4, 6, 8], [2, 9], [2, 4, 9], [2, 5, 9], [2, 6, 9], [2, 7, 9], |
|
[2, 4, 6, 9], [2, 4, 7, 9], [2, 5, 7, 9], [2, 10], [2, 4, 10], [2, 5, 10], |
|
[2, 6, 10], [2, 7, 10], [2, 8, 10], [2, 4, 6, 10], [2, 4, 7, 10], |
|
[2, 4, 8, 10], [2, 5, 7, 10], [2, 5, 8, 10], [2, 6, 8, 10], [2, 4, 6, 8, 10], |
|
[2, 11], [2, 4, 11], [2, 5, 11], [2, 6, 11], [2, 7, 11], [2, 8, 11], |
|
[2, 9, 11], [2, 4, 6, 11], [2, 4, 7, 11], [2, 4, 8, 11], [2, 4, 9, 11], |
|
[2, 5, 7, 11], [2, 5, 8, 11], [2, 5, 9, 11], [2, 6, 8, 11], [2, 6, 9, 11], |
|
[2, 7, 9, 11], [2, 4, 6, 8, 11], [2, 4, 6, 9, 11], [2, 4, 7, 9, 11], |
|
[2, 5, 7, 9, 11], [3], [3, 5], [3, 6], [3, 7], [3, 5, 7], [3, 8], [3, 5, 8], |
|
[3, 6, 8], [3, 9], [3, 5, 9], [3, 6, 9], [3, 7, 9], [3, 5, 7, 9], [3, 10], |
|
[3, 5, 10], [3, 6, 10], [3, 7, 10], [3, 8, 10], [3, 5, 7, 10], [3, 5, 8, 10], |
|
[3, 6, 8, 10], [3, 11], [3, 5, 11], [3, 6, 11], [3, 7, 11], [3, 8, 11], |
|
[3, 9, 11], [3, 5, 7, 11], [3, 5, 8, 11], [3, 5, 9, 11], [3, 6, 8, 11], |
|
[3, 6, 9, 11], [3, 7, 9, 11], [3, 5, 7, 9, 11], [4], [4, 6], [4, 7], [4, 8], |
|
[4, 6, 8], [4, 9], [4, 6, 9], [4, 7, 9], [4, 10], [4, 6, 10], [4, 7, 10], |
|
[4, 8, 10], [4, 6, 8, 10], [4, 11], [4, 6, 11], [4, 7, 11], [4, 8, 11], |
|
[4, 9, 11], [4, 6, 8, 11], [4, 6, 9, 11], [4, 7, 9, 11], [5], [5, 7], [5, 8], |
|
[5, 9], [5, 7, 9], [5, 10], [5, 7, 10], [5, 8, 10], [5, 11], [5, 7, 11], |
|
[5, 8, 11], [5, 9, 11], [5, 7, 9, 11], [6], [6, 8], [6, 9], [6, 10], |
|
[6, 8, 10], [6, 11], [6, 8, 11], [6, 9, 11], [7], [7, 9], [7, 10], [7, 11], |
|
[7, 9, 11], [8], [8, 10], [8, 11], [9], [9, 11], [10], [11]] |
|
|
|
|
|
|
|
MIDI_Instruments_Families = { |
|
0: 'Piano Family', |
|
1: 'Chromatic Percussion Family', |
|
2: 'Organ Family', |
|
3: 'Guitar Family', |
|
4: 'Bass Family', |
|
5: 'Strings Family', |
|
6: 'Ensemble Family', |
|
7: 'Brass Family', |
|
8: 'Reed Family', |
|
9: 'Pipe Family', |
|
10: 'Synth Lead Family', |
|
11: 'Synth Pad Family', |
|
12: 'Synth Effects Family', |
|
13: 'Ethnic Family', |
|
14: 'Percussive Family', |
|
15: 'Sound Effects Family', |
|
16: 'Drums Family', |
|
-1: 'Unknown Family', |
|
} |
|
|
|
|
|
|
|
def patch_to_instrument_family(MIDI_patch, drums_patch=128): |
|
|
|
if 0 <= MIDI_patch < 128: |
|
return MIDI_patch // 8, MIDI_Instruments_Families[MIDI_patch // 8] |
|
|
|
elif MIDI_patch == drums_patch: |
|
return MIDI_patch // 8, MIDI_Instruments_Families[16] |
|
|
|
else: |
|
return -1, MIDI_Instruments_Families[-1] |
|
|
|
|
|
|
|
def patch_list_from_enhanced_score_notes(enhanced_score_notes, |
|
default_patch=0, |
|
drums_patch=9, |
|
verbose=False |
|
): |
|
|
|
patches = [-1] * 16 |
|
|
|
for idx, e in enumerate(enhanced_score_notes): |
|
if e[3] != 9: |
|
if patches[e[3]] == -1: |
|
patches[e[3]] = e[6] |
|
else: |
|
if patches[e[3]] != e[6]: |
|
if e[6] in patches: |
|
e[3] = patches.index(e[6]) |
|
else: |
|
if -1 in patches: |
|
patches[patches.index(-1)] = e[6] |
|
else: |
|
patches[-1] = e[6] |
|
|
|
if verbose: |
|
print('=' * 70) |
|
print('WARNING! Composition has more than 15 patches!') |
|
print('Conflict note number:', idx) |
|
print('Conflict channel number:', e[3]) |
|
print('Conflict patch number:', e[6]) |
|
|
|
patches = [p if p != -1 else default_patch for p in patches] |
|
|
|
patches[9] = drums_patch |
|
|
|
if verbose: |
|
print('=' * 70) |
|
print('Composition patches') |
|
print('=' * 70) |
|
for c, p in enumerate(patches): |
|
print('Cha', str(c).zfill(2), '---', str(p).zfill(3), Number2patch[p]) |
|
print('=' * 70) |
|
|
|
return patches |
|
|
|
|
|
|
|
def patch_enhanced_score_notes(enhanced_score_notes, |
|
default_patch=0, |
|
drums_patch=9, |
|
verbose=False |
|
): |
|
|
|
|
|
|
|
enhanced_score_notes_with_patch_changes = [] |
|
|
|
patches = [-1] * 16 |
|
|
|
overflow_idx = -1 |
|
|
|
for idx, e in enumerate(enhanced_score_notes): |
|
if e[3] != 9: |
|
if patches[e[3]] == -1: |
|
patches[e[3]] = e[6] |
|
else: |
|
if patches[e[3]] != e[6]: |
|
if e[6] in patches: |
|
e[3] = patches.index(e[6]) |
|
else: |
|
if -1 in patches: |
|
patches[patches.index(-1)] = e[6] |
|
else: |
|
overflow_idx = idx |
|
break |
|
|
|
enhanced_score_notes_with_patch_changes.append(e) |
|
|
|
|
|
|
|
overflow_patches = [] |
|
|
|
if overflow_idx != -1: |
|
for idx, e in enumerate(enhanced_score_notes[overflow_idx:]): |
|
if e[3] != 9: |
|
if e[6] not in patches: |
|
if e[6] not in overflow_patches: |
|
overflow_patches.append(e[6]) |
|
enhanced_score_notes_with_patch_changes.append(['patch_change', e[1], e[3], e[6]]) |
|
else: |
|
e[3] = patches.index(e[6]) |
|
|
|
enhanced_score_notes_with_patch_changes.append(e) |
|
|
|
|
|
|
|
patches = [p if p != -1 else default_patch for p in patches] |
|
|
|
patches[9] = drums_patch |
|
|
|
|
|
|
|
if verbose: |
|
print('=' * 70) |
|
print('Composition patches') |
|
print('=' * 70) |
|
for c, p in enumerate(patches): |
|
print('Cha', str(c).zfill(2), '---', str(p).zfill(3), Number2patch[p]) |
|
print('=' * 70) |
|
|
|
if overflow_patches: |
|
print('Extra composition patches') |
|
print('=' * 70) |
|
for c, p in enumerate(overflow_patches): |
|
print(str(p).zfill(3), Number2patch[p]) |
|
print('=' * 70) |
|
|
|
return enhanced_score_notes_with_patch_changes, patches, overflow_patches |
|
|
|
|
|
|
|
|
|
|
|
|
|
|