Datasets:
Tasks:
Summarization
Modalities:
Text
Formats:
json
Languages:
Catalan
Size:
10K - 100K
ArXiv:
License:
# Loading script for the VilaSum dataset. | |
import json | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """@misc{degibert2022sequencetosequence, | |
title={Sequence-to-Sequence Resources for Catalan}, | |
author={Ona de Gibert and Ksenia Kharitonova and Blanca Calvo Figueras and Jordi Armengol-Estapé and Maite Melero}, | |
year={2022}, | |
eprint={2202.06871}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
}""" | |
_DESCRIPTION = """VilaSum is a summarization dataset for evaluation. It is extracted from a newswire corpus crawled from Vilaweb. The corpus consists of 13,843 instances that are composed by the headline and the body. | |
""" | |
_HOMEPAGE = """https://github.com/TeMU-BSC/seq-to-seq-catalan""" | |
_URL = "https://huggingface.co/datasets/projecte-aina/vilasum/resolve/main/" | |
_TEST_FILE = "test.jsonl" | |
class VilaSumConfig(datasets.BuilderConfig): | |
""" Builder config for the VilaSum dataset """ | |
def __init__(self, **kwargs): | |
"""BuilderConfig for VilaSum. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(VilaSumConfig, self).__init__(**kwargs) | |
class VilaSum(datasets.GeneratorBasedBuilder): | |
"""VilaSum Dataset.""" | |
BUILDER_CONFIGS = [ | |
VilaSumConfig( | |
name="VilaSum", | |
version=datasets.Version("1.0.0"), | |
description="VilaSum dataset" | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"summary": datasets.Value("string"), | |
"text": datasets.Value("string") | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"test": f"{_URL}{_TEST_FILE}" | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath) as f: | |
for id_, row in enumerate(f): | |
article = json.loads(row) | |
text = article['text'] | |
summary = article['summary'] | |
yield id_, { "summary": summary,"text": text} |