|
"""CoQA dataset.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_HOMEPAGE = "" |
|
|
|
_CITATION = """\ |
|
|
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
CoQCat - Conversational Question Answering in Catalan |
|
""" |
|
|
|
_TRAIN_FILE = "train.json" |
|
_DEV_FILE = "dev.json" |
|
_TEST_FILE = "test.json" |
|
|
|
class Coqa(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"source": datasets.Value("string"), |
|
"story": datasets.Value("string"), |
|
"questions": datasets.features.Sequence(datasets.Value("string")), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"input_text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
"answer_end": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_TRAIN_FILE}", |
|
"dev": f"{_DEV_FILE}", |
|
"test": f"{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"], "split": "train"}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"], "split": "test"}), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for row in data["data"]: |
|
questions = [question["input_text"] for question in row["questions"]] |
|
story = row["story"] |
|
source = row["source"] |
|
answers_start = [answer["span_start"] for answer in row["answers"]] |
|
answers_end = [answer["span_end"] for answer in row["answers"]] |
|
answers = [answer["input_text"] for answer in row["answers"]] |
|
yield row["id"], { |
|
"source": source, |
|
"story": story, |
|
"questions": questions, |
|
"answers": {"input_text": answers, "answer_start": answers_start, "answer_end": answers_end}, |
|
} |
|
|