|
|
|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = "" |
|
|
|
_DESCRIPTION = """\ |
|
The COPA-ca dataset (Choice of plausible alternatives in Catalan) is a professional translation of the English COPA dataset into Catalan, commissioned by BSC LangTech Unit. The dataset consists of 1000 premises, each given a question and two choices with a label encoding which of the choices is more plausible given the annotator. |
|
|
|
The dataset is split into 400 training samples, 100 validation samples, and 500 test samples. It includes the following features: 'premise', 'choice1', 'choice2', 'label', 'question', 'changed' (boolean). |
|
|
|
This work is licensed under a Attribution-ShareAlike 4.0 International License. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/8124398" |
|
|
|
|
|
_URL = "https://huggingface.co/datasets/projecte-aina/copa-ca/resolve/main/" |
|
_TRAIN_FILE = "copa-ca.train.jsonl" |
|
_DEV_FILE = "copa-ca.val.jsonl" |
|
_TEST_FILE = "copa-ca.test.jsonl" |
|
|
|
|
|
class copaCaConfig(datasets.BuilderConfig): |
|
""" Builder config for the COPA-ca dataset """ |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for COPA-ca. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(copaCaConfig, self).__init__(**kwargs) |
|
|
|
class copaCa(datasets.GeneratorBasedBuilder): |
|
""" COPA-ca Dataset """ |
|
|
|
BUILDER_CONFIGS = [ |
|
copaCaConfig( |
|
name="copa-ca", |
|
version=datasets.Version("1.0.1"), |
|
description="COPA-ca dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"premise": datasets.Value("string"), |
|
"choice1": datasets.Value("string"), |
|
"choice2": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
'label': datasets.features.ClassLabel(names=['1', '2']), |
|
"idx": datasets.Value("int64"), |
|
"changed": datasets.Value("bool"), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAIN_FILE}", |
|
"dev": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding='utf-8') as f: |
|
for i, line in enumerate(f): |
|
data = json.loads(line) |
|
yield i, { |
|
'premise': data['premise'], |
|
'choice1': data['choice1'], |
|
'choice2': data['choice2'], |
|
'question': data['question'], |
|
'label': str(data['label']), |
|
'idx': data['idx'], |
|
'changed': data['changed'] |
|
} |
|
|