smece / README.md
procesaur's picture
Update README.md
f15fcea verified
---
language:
- sr
pretty_name: SMEĆE
size_categories:
- 1B<n<10B
configs:
- config_name: default
data_files:
- split: stars
path: stars.boiler.txt
- split: train
path: '*.boiler.txt'
task_categories:
- text-generation
- text-classification
license: cc-by-sa-4.0
---
<img src="cover.png" class="cover">
<table style="width:100%;height:100%">
<!--tr style="width:100%;height:30px">
<td colspan=2 align=center>
<h1>SMEĆE</h1>
</td>
<tr-->
<tr style="width:100%;height:100%">
<td width=50%>
<h2>Skup teksta koji je obeležen kao smeće prilikom pripremanja drugih korpusa</h2>
<p>oko 1.5 milijardi "reči"</p>
<p>Može se koristiti za obučavanje modela za klasifikaciju smeća :)</p>
<h4>Za korpuse pravog teksta za srpski jezik pogledajte <a
href="https://huggingface.co/datasets/procesaur/STARS" class="highlight-container">
<b class="highlight">S.T.A.R.S</b></a> (13,289 disertacija sa <a href="https://nardus.mpn.gov.rs/">NARDUS-a</a>) ili
<a href="https://huggingface.co/datasets/procesaur/kisobran" class="highlight-container">
<b class="highlight">Kišobran veb korpus</b></a> (najveći korpus za srpski jezik).</h4>
</td>
<td>
<h2>A set of text marked as garbage/boilerplate when preparing other corpora</h2>
<p>around 1.5 billion "words"</p>
<p>Can be used to train boilerplate classification models :)</p>
<h4>For real text corpora for Serbian see <a href="https://huggingface.co/datasets/procesaur/STARS" class="highlight-container">
<b class="highlight">S.T.A.R.S</b></a> (13,289 dissertations from <a href="https://nardus.mpn.gov.rs/">NARDUS</a>) or
<a href="https://huggingface.co/datasets/procesaur/kisobran" class="highlight-container">
<b class="highlight">Umbrella web corp.</b></a> (largest corpus for the Serbian language).</h4>
</td>
</tr>
</table>
```python
from datasets import load_dataset
dataset = load_dataset("procesaur/smece")
```
<div class="inline-flex flex-col" style="line-height: 1.5;padding-right:50px">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Editor</div>
<a href="https://huggingface.co/procesaur">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url(&#39;https://cdn-uploads.huggingface.co/production/uploads/1673534533167-63bc254fb8c61b8aa496a39b.jpeg?w=200&h=200&f=face&#39;)">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mihailo Škorić</div>
<div>
<a href="https://huggingface.co/procesaur">
<div style="text-align: center; font-size: 14
px;">@procesaur</div>
</a>
</div>
</div>
</div>
Citation:
```bibtex
@article{skoric24korpusi,
author = {\vSkori\'c, Mihailo and Jankovi\'c, Nikola},
title = {New Textual Corpora for Serbian Language Modeling},
journal = {Infotheca},
volume = {24},
issue = {1},
year = {2024},
publisher = {Zajednica biblioteka univerziteta u Srbiji, Beograd},
url = {https://arxiv.org/abs/2405.09250}
}
```
<style>
.ffeat: {
color:red
}
.cover {
width: 100%;
margin-bottom: 5pt
}
.highlight-container, .highlight {
position: relative;
text-decoration:none
}
.highlight-container {
display: inline-block;
}
.highlight{
color:white;
text-transform:uppercase;
font-size: 16pt;
}
.highlight-container{
padding:5px 10px
}
.highlight-container:before {
content: " ";
display: block;
height: 100%;
width: 100%;
margin-left: 0px;
margin-right: 0px;
position: absolute;
background: #e80909;
transform: rotate(2deg);
top: -1px;
left: -1px;
border-radius: 20% 25% 20% 24%;
padding: 10px 18px 18px 10px;
}
div.grb, #zastava>table {
position:absolute;
top:0px;
left: 0px;
margin:0px
}
div.grb>img, #zastava>table{
margin:0px
}
#zastava {
position: relative;
margin-bottom:120px
}
p {
font-size:14pt
}
</style>