Datasets:

Modalities:
Text
Formats:
json
Languages:
Serbian
ArXiv:
Libraries:
Datasets
pandas
License:
STARS / README.md
procesaur's picture
Update README.md
aa945f5 verified
|
raw
history blame
7.09 kB
metadata
language:
  - sr
pretty_name: S.T.A.R.S.
size_categories:
  - 100M<n<1B
configs:
  - config_name: default
    data_files:
      - split: train
        path:
          - '*_sr.jsonl'
          - '*cnr_.jsonl'
task_categories:
  - text-generation
license: cc-by-sa-4.0

Skup Teza i Akademskih Radova na Srpskom

Visoko-kvalitetan skup doktorskih disertacija objavljenih u Srbiji i pisanih na srpskom jeziku

Neophodan za obučavanje kvalitetnih jezičkih modela za srpski jezik.

Ukupno 11,620 dokumenata, ukupno sa preko 550 miliona reči.

Svaka JSON linija predstavlja jednu publikaciju.

Unutar svakog dokumenta su obeležene rečenice i paragrafi.

Za kompletne metapodatke dokumenata pogledajte NARDUS-meta (metapodaci 13,289 disertacija sa NARDUS-a).

Za paralelni KORPUS PREVODA sažetaka pogledajte PaSaž (preko 20,000 paralelnih segmenata).

Set of Thesis and Academic Research in Serbian

Highly curated, High-quality, Serbian doctoral dissertation corpus

Necessary for training quality language models for Serbian.

A total of 11,620 documents containing over 550 million words.

Each JSON line represents one publication.

All documents are paragraph and sentence-delimited.

For the complete metadata check out NARDUS-meta (metadata for 13,289 dissertations from NARDUS-a).

For the coprus of PARALEL TRANSALTIONS check out PaSaž (over 20,000 paralel segments).

from datasets import load_dataset
dataset = load_dataset("procesaur/STARS")["train"]["text"]
print(dataset[0])
'<s>Uticaj brzine vazduha na aerosole formirane od 1 % emulzija 112 Uticaj brzine vazduha na aerosole...'
Editor
Mihailo Škorić
Editor
Nikola Janković

Citation:

@article{skoric24korpusi,
  author    = {\vSkori\'c, Mihailo and Jankovi\'c, Nikola},
  title     = {New Textual Corpora for Serbian Language Modeling},
  journal   = {Infotheca},
  volume    = {24},
  issue     = {1},
  year      = {2024},
  publisher = {Zajednica biblioteka univerziteta u Srbiji, Beograd},
  url       = {https://arxiv.org/abs/2405.09250}
}

Истраживање jе спроведено уз подршку Фонда за науку Републике Србиjе, #7276, Text Embeddings – Serbian Language Applications – TESLA.

This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA.