tokenspace / generate-embeddings.py
ppbrown's picture
convert to handle dictionary format
7b5e170 verified
raw
history blame
1.83 kB
#!/usr/bin/python3
""" Work in progress
Plan:
Read in fullword.json for list of works and token
Generate "proper" embedding for each token, and store in tensor file
Generate a tensor array of distance to every other token/embedding
Save it out
"""
import sys
import json
import torch
from safetensors.torch import save_file
from transformers import CLIPProcessor,CLIPModel
clipsrc="openai/clip-vit-large-patch14"
processor=None
model=None
device=torch.device("cuda")
def init():
global processor
global model
# Load the processor and model
print("loading processor from "+clipsrc,file=sys.stderr)
processor = CLIPProcessor.from_pretrained(clipsrc)
print("done",file=sys.stderr)
print("loading model from "+clipsrc,file=sys.stderr)
model = CLIPModel.from_pretrained(clipsrc)
print("done",file=sys.stderr)
model = model.to(device)
# Expect SINGLE WORD ONLY
def standard_embed_calc(text):
inputs = processor(text=text, return_tensors="pt")
inputs.to(device)
with torch.no_grad():
text_features = model.get_text_features(**inputs)
embedding = text_features[0]
return embedding
init()
with open("dictionary","r") as f:
tokendict = f.readlines()
tokendict = [token.strip() for token in tokendict] # Remove trailing newlines
print("generate embeddings for each now",file=sys.stderr)
count=1
all_embeddings = []
for word in tokendict:
emb = standard_embed_calc(word)
emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work
all_embeddings.append(emb)
count+=1
if (count %100) ==0:
print(count)
embs = torch.cat(all_embeddings,dim=0)
print("Shape of result = ",embs.shape)
print("Saving all the things...")
save_file({"embeddings": embs}, "embeddings.safetensors")
print("calculate distances now")