|
|
|
|
|
""" Work in progress |
|
Plan: |
|
Read in fullword.json for list of works and token |
|
Generate "proper" embedding for each token, and store in tensor file |
|
Generate a tensor array of distance to every other token/embedding |
|
Save it out |
|
""" |
|
|
|
|
|
import sys |
|
import json |
|
import torch |
|
from safetensors.torch import save_file |
|
from transformers import CLIPProcessor,CLIPModel |
|
|
|
clipsrc="openai/clip-vit-large-patch14" |
|
processor=None |
|
model=None |
|
|
|
device=torch.device("cuda") |
|
|
|
|
|
def init(): |
|
global processor |
|
global model |
|
|
|
print("loading processor from "+clipsrc,file=sys.stderr) |
|
processor = CLIPProcessor.from_pretrained(clipsrc) |
|
print("done",file=sys.stderr) |
|
print("loading model from "+clipsrc,file=sys.stderr) |
|
model = CLIPModel.from_pretrained(clipsrc) |
|
print("done",file=sys.stderr) |
|
|
|
model = model.to(device) |
|
|
|
|
|
def standard_embed_calc(text): |
|
inputs = processor(text=text, return_tensors="pt") |
|
inputs.to(device) |
|
with torch.no_grad(): |
|
text_features = model.get_text_features(**inputs) |
|
embedding = text_features[0] |
|
return embedding |
|
|
|
|
|
init() |
|
|
|
with open("dictionary","r") as f: |
|
tokendict = f.readlines() |
|
tokendict = [token.strip() for token in tokendict] |
|
|
|
print("generate embeddings for each now",file=sys.stderr) |
|
count=1 |
|
all_embeddings = [] |
|
for word in tokendict: |
|
emb = standard_embed_calc(word) |
|
emb=emb.unsqueeze(0) |
|
all_embeddings.append(emb) |
|
count+=1 |
|
if (count %100) ==0: |
|
print(count) |
|
|
|
embs = torch.cat(all_embeddings,dim=0) |
|
print("Shape of result = ",embs.shape) |
|
print("Saving all the things...") |
|
save_file({"embeddings": embs}, "embeddings.safetensors") |
|
|
|
|
|
print("calculate distances now") |
|
|
|
|
|
|